Enderton (set). Begin adding Chapter 6 lean theorems.
parent
9e9072ce45
commit
306acd2975
|
@ -150,6 +150,9 @@
|
|||
\lean*{Mathlib/Init/Function}
|
||||
{Function.Bijective}
|
||||
|
||||
\lean{Mathlib/Logic/Equiv/Defs}
|
||||
{Equiv}
|
||||
|
||||
\section{\defined{Equivalence Class}}%
|
||||
\hyperlabel{ref:equivalence-class}
|
||||
|
||||
|
@ -214,8 +217,8 @@
|
|||
A set is \textbf{finite} if and only if it is \nameref{ref:equinumerous} to a
|
||||
\nameref{ref:natural-number}.
|
||||
|
||||
\lean{Mathlib/Data/Finset/Basic}
|
||||
{Finset}
|
||||
\lean*{Mathlib/Data/Set/Finite}
|
||||
{Set.Finite}
|
||||
|
||||
\section{\defined{Function}}%
|
||||
\hyperlabel{ref:function}
|
||||
|
@ -298,6 +301,9 @@
|
|||
A set is \textbf{infinite} if and only if it is not a
|
||||
\nameref{ref:finite-set}.
|
||||
|
||||
\lean*{Mathlib/Data/Set/Finite}
|
||||
{Set.Infinite}
|
||||
|
||||
\section{\defined{Infinity Axiom}}%
|
||||
\hyperlabel{ref:infinity-axiom}
|
||||
|
||||
|
@ -3159,6 +3165,23 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Bijections are Two-Sided Inverses}}%
|
||||
\hyperlabel{sub:bijections-two-sided-inverses}
|
||||
|
||||
\begin{corollary}
|
||||
A function $f$ is a one-to-one correspondence if and only if it has a left
|
||||
and right inverse.
|
||||
\end{corollary}
|
||||
|
||||
\begin{proof}
|
||||
By definition, a one-to-one correspondence $f$ between sets $A$ and $B$ must
|
||||
be both one-to-one and onto.
|
||||
By \nameref{sub:theorem-3j}, $f$ is one-to-one if and only if it has a left
|
||||
inverse.
|
||||
The same theorem states that $f$ is onto $B$ if and only if it has a right
|
||||
inverse.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Theorem 3K(a)}}%
|
||||
\hyperlabel{sub:theorem-3k-a}
|
||||
|
||||
|
@ -8520,13 +8543,16 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Theorem 6B}}%
|
||||
\subsection{\verified{Theorem 6B}}%
|
||||
\hyperlabel{sub:theorem-6b}
|
||||
|
||||
\begin{theorem}[6B]
|
||||
No set is \nameref{ref:equinumerous} to its powerset.
|
||||
\end{theorem}
|
||||
|
||||
\code*{Bookshelf/Enderton/Set/Chapter\_6}
|
||||
{Enderton.Set.Chapter\_6.theorem\_6b}
|
||||
|
||||
\begin{proof}
|
||||
Let $A$ be an arbitrary set and $f \colon A \rightarrow \powerset{A}$.
|
||||
Define $\phi = \{a \in A \mid a \not\in f(a)\}$.
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import Mathlib.Data.Finset.Basic
|
||||
import Mathlib.Data.Set.Finite
|
||||
import Mathlib.Data.Set.Function
|
||||
import Mathlib.Data.Rel
|
||||
|
||||
|
@ -36,6 +38,78 @@ theorem theorem_6a_c (A : Set α) (B : Set β) (C : Set γ)
|
|||
: ∃ H, Set.BijOn H A C := by
|
||||
exact ⟨G ∘ F, Set.BijOn.comp hG hF⟩
|
||||
|
||||
/-- #### Theorem 6B
|
||||
|
||||
No set is equinumerous to its powerset.
|
||||
-/
|
||||
theorem theorem_6b (A : Set α)
|
||||
: ∀ f, ¬ Set.BijOn f A (𝒫 A) := by
|
||||
intro f hf
|
||||
unfold Set.BijOn at hf
|
||||
let φ := { a ∈ A | a ∉ f a }
|
||||
suffices ∀ a ∈ A, f a ≠ φ by
|
||||
have hφ := hf.right.right (show φ ∈ 𝒫 A by simp)
|
||||
have ⟨a, ha⟩ := hφ
|
||||
exact absurd ha.right (this a ha.left)
|
||||
intro a ha hfa
|
||||
by_cases h : a ∈ f a
|
||||
· have h' := h
|
||||
rw [hfa] at h
|
||||
simp only [Set.mem_setOf_eq] at h
|
||||
exact absurd h' h.right
|
||||
· rw [Set.Subset.antisymm_iff] at hfa
|
||||
have := hfa.right ⟨ha, h⟩
|
||||
exact absurd this h
|
||||
|
||||
/-- #### Pigeonhole Principle
|
||||
|
||||
No natural number is equinumerous to a proper subset of itself.
|
||||
-/
|
||||
theorem pigeonhole_principle (m n : ℕ) (hm : m < n)
|
||||
: ∀ f : Fin m → Fin n, ¬ Function.Bijective f := by
|
||||
sorry
|
||||
|
||||
/-- #### Corollary 6C
|
||||
|
||||
No finite set is equinumerous to a proper subset of itself.
|
||||
-/
|
||||
theorem corollary_6c (S S' : Finset α) (hS : S' ⊂ S)
|
||||
: ∀ f : S → S', ¬ Function.Bijective f := by
|
||||
sorry
|
||||
|
||||
/-- #### Corollary 6D (a)
|
||||
|
||||
Any set equinumerous to a proper subset of itself is infinite.
|
||||
-/
|
||||
theorem corollary_6d_a (S S' : Set α) (hS : S' ⊂ S) (hf : S' ≃ S)
|
||||
: Set.Infinite S := by
|
||||
sorry
|
||||
|
||||
/-- #### Corollary 6D (b)
|
||||
|
||||
The set `ω` is infinite.
|
||||
-/
|
||||
theorem corollary_6d_b
|
||||
: Set.Infinite (@Set.univ ℕ) := by
|
||||
sorry
|
||||
|
||||
/-- #### Corollary 6E
|
||||
|
||||
Any finite set is equinumerous to a unique natural number.
|
||||
-/
|
||||
theorem corollary_6e (S : Set α) (f : S → Fin n) (hf : Function.Bijective f)
|
||||
: S ≃ Fin m → m = n := by
|
||||
sorry
|
||||
|
||||
/-- #### Lemma 6F
|
||||
|
||||
If `C` is a proper subset of a natural number `n`, then `C ≈ m` for some `m`
|
||||
less than `n`.
|
||||
-/
|
||||
lemma lemma_6f {n : ℕ} (C S : Finset ℕ) (hC : C ⊂ S) (hS : S ≃ Fin n)
|
||||
: ∃ m : ℕ, m < n ∧ ∃ f : C → Fin m, Function.Bijective f := by
|
||||
sorry
|
||||
|
||||
/-- #### Exercise 6.1
|
||||
|
||||
Show that the equation
|
||||
|
|
Loading…
Reference in New Issue