Start fixing up unverified.
parent
e08e68bbc3
commit
1eff704803
|
@ -9,6 +9,7 @@ A Set of Axioms for the Real-Number System
|
|||
namespace Apostol.Chapter_I_03
|
||||
|
||||
#check Archimedean
|
||||
|
||||
#check Real.exists_isLUB
|
||||
|
||||
/-! ## The least-upper-bound axiom (completeness axiom) -/
|
||||
|
|
|
@ -1165,7 +1165,7 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Monotonicity}}%
|
||||
\subsection{\verified{Monotonicity}}%
|
||||
\hyperlabel{sub:monotonicity}
|
||||
|
||||
For any sets $A$, $B$, and $C$,
|
||||
|
@ -1175,11 +1175,23 @@
|
|||
A \subseteq B & \Rightarrow \bigcup A \subseteq \bigcup B
|
||||
\end{align*}
|
||||
|
||||
\lean{Mathlib/Data/Set/Basic}{Set.union\_subset\_union\_left}
|
||||
\lean{Mathlib/Data/Set/Basic}
|
||||
{Set.union\_subset\_union\_left}
|
||||
|
||||
\lean{Mathlib/Data/Set/Basic}{Set.inter\_subset\_inter\_left}
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_2}
|
||||
{Enderton.Set.Chapter\_2.monotonicity\_i}
|
||||
|
||||
\lean{Mathlib/Data/Set/Lattice}{Set.sUnion\_mono}
|
||||
\lean{Mathlib/Data/Set/Basic}
|
||||
{Set.inter\_subset\_inter\_left}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_2}
|
||||
{Enderton.Set.Chapter\_2.monotonicity\_ii}
|
||||
|
||||
\lean{Mathlib/Data/Set/Lattice}
|
||||
{Set.sUnion\_mono}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_2}
|
||||
{Enderton.Set.Chapter\_2.monotonicity\_iii}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
|
@ -1236,7 +1248,7 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Anti-monotonicity}}%
|
||||
\subsection{\verified{Anti-monotonicity}}%
|
||||
\hyperlabel{sub:anti-monotonicity}
|
||||
|
||||
For any sets $A$, $B$, and $C$,
|
||||
|
@ -1245,9 +1257,17 @@
|
|||
\emptyset \neq A \subseteq B & \Rightarrow \bigcap B \subseteq \bigcap A.
|
||||
\end{align*}
|
||||
|
||||
\lean{Mathlib/Data/Set/Basic}{Set.diff\_subset\_diff\_right}
|
||||
\lean{Mathlib/Data/Set/Basic}
|
||||
{Set.diff\_subset\_diff\_right}
|
||||
|
||||
\lean{Mathlib/Data/Set/Lattice}{Set.sInter\_subset\_sInter}
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_2}
|
||||
{Enderton.Set.Chapter\_2.anti\_monotonicity\_i}
|
||||
|
||||
\lean{Mathlib/Data/Set/Lattice}
|
||||
{Set.sInter\_subset\_sInter}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_2}
|
||||
{Enderton.Set.Chapter\_2.anti\_monotonicity\_ii}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
|
@ -1404,14 +1424,18 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{%
|
||||
\subsection{\verified{%
|
||||
\texorpdfstring{$\cap$/$-$}{Intersection/Difference} Associativity}}%
|
||||
\hyperlabel{sub:intersection-difference-associativity}
|
||||
|
||||
Let $A$, $B$, and $C$ be sets.
|
||||
Then $A \cap (B - C) = (A \cap B) - C$.
|
||||
|
||||
\lean*{Mathlib/Data/Set/Basic}{Set.inter\_diff\_assoc}
|
||||
\lean*{Mathlib/Data/Set/Basic}
|
||||
{Set.inter\_diff\_assoc}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_2}
|
||||
{Enderton.Set.Chapter\_2.inter\_diff\_assoc}
|
||||
|
||||
\begin{proof}
|
||||
Let $A$, $B$, and $C$ be sets.
|
||||
|
@ -2626,7 +2650,7 @@
|
|||
This concludes our proof.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Corollary 3C}}%
|
||||
\subsection{\unverified{Corollary 3C}}%
|
||||
\hyperlabel{sub:corollary-3c}
|
||||
|
||||
\begin{theorem}[3C]
|
||||
|
@ -2634,13 +2658,14 @@
|
|||
pairs $\pair{x, y}$ with $x \in A$ and $y \in B$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{note}
|
||||
The below Lean proof is a definition (i.e. an axiom).
|
||||
It does not prove such a set's existence from first principles.
|
||||
\end{note}
|
||||
|
||||
\lean{Mathlib/SetTheory/ZFC/Basic}{Set.prod}
|
||||
|
||||
\begin{proof}
|
||||
\begin{note}
|
||||
The above Lean proof is a definition (i.e. an axiom).
|
||||
It does not prove such a set's existence from first principles.
|
||||
\end{note}
|
||||
Define $C = A \cup B$.
|
||||
Then for all $x \in A$ and for all $y \in B$, $x$ and $y$ are both in $C$.
|
||||
By \nameref{sub:lemma-3b}, it follows that
|
||||
|
|
|
@ -18,8 +18,6 @@ A ∩ B = B ∩ A
|
|||
```
|
||||
-/
|
||||
|
||||
#check Set.union_comm
|
||||
|
||||
theorem commutative_law_i (A B : Set α)
|
||||
: A ∪ B = B ∪ A := calc A ∪ B
|
||||
_ = { x | x ∈ A ∨ x ∈ B } := rfl
|
||||
|
@ -28,7 +26,7 @@ theorem commutative_law_i (A B : Set α)
|
|||
exact or_comm
|
||||
_ = B ∪ A := rfl
|
||||
|
||||
#check Set.inter_comm
|
||||
#check Set.union_comm
|
||||
|
||||
theorem commutative_law_ii (A B : Set α)
|
||||
: A ∩ B = B ∩ A := calc A ∩ B
|
||||
|
@ -38,6 +36,8 @@ theorem commutative_law_ii (A B : Set α)
|
|||
exact and_comm
|
||||
_ = B ∩ A := rfl
|
||||
|
||||
#check Set.inter_comm
|
||||
|
||||
/-! #### Associative Laws
|
||||
|
||||
For any sets `A`, `B`, and `C`,
|
||||
|
@ -47,8 +47,6 @@ A ∩ (B ∩ C) = (A ∩ B) ∩ C
|
|||
```
|
||||
-/
|
||||
|
||||
#check Set.union_assoc
|
||||
|
||||
theorem associative_law_i (A B C : Set α)
|
||||
: A ∪ (B ∪ C) = (A ∪ B) ∪ C := calc A ∪ (B ∪ C)
|
||||
_ = { x | x ∈ A ∨ x ∈ B ∪ C } := rfl
|
||||
|
@ -60,7 +58,7 @@ theorem associative_law_i (A B C : Set α)
|
|||
_ = { x | x ∈ A ∪ B ∨ x ∈ C } := rfl
|
||||
_ = (A ∪ B) ∪ C := rfl
|
||||
|
||||
#check Set.inter_assoc
|
||||
#check Set.union_assoc
|
||||
|
||||
theorem associative_law_ii (A B C : Set α)
|
||||
: A ∩ (B ∩ C) = (A ∩ B) ∩ C := calc A ∩ (B ∩ C)
|
||||
|
@ -73,6 +71,8 @@ theorem associative_law_ii (A B C : Set α)
|
|||
_ = { x | x ∈ A ∩ B ∧ x ∈ C } := rfl
|
||||
_ = (A ∩ B) ∩ C := rfl
|
||||
|
||||
#check Set.inter_assoc
|
||||
|
||||
/-! #### Distributive Laws
|
||||
|
||||
For any sets `A`, `B`, and `C`,
|
||||
|
@ -82,8 +82,6 @@ A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
|
|||
```
|
||||
-/
|
||||
|
||||
#check Set.inter_distrib_left
|
||||
|
||||
theorem distributive_law_i (A B C : Set α)
|
||||
: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) := calc A ∩ (B ∪ C)
|
||||
_ = { x | x ∈ A ∧ x ∈ B ∪ C } := rfl
|
||||
|
@ -94,7 +92,7 @@ theorem distributive_law_i (A B C : Set α)
|
|||
_ = { x | x ∈ A ∩ B ∨ x ∈ A ∩ C } := rfl
|
||||
_ = (A ∩ B) ∪ (A ∩ C) := rfl
|
||||
|
||||
#check Set.union_distrib_left
|
||||
#check Set.inter_distrib_left
|
||||
|
||||
theorem distributive_law_ii (A B C : Set α)
|
||||
: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) := calc A ∪ (B ∩ C)
|
||||
|
@ -106,6 +104,8 @@ theorem distributive_law_ii (A B C : Set α)
|
|||
_ = { x | x ∈ A ∪ B ∧ x ∈ A ∪ C } := rfl
|
||||
_ = (A ∪ B) ∩ (A ∪ C) := rfl
|
||||
|
||||
#check Set.union_distrib_left
|
||||
|
||||
/-! #### De Morgan's Laws
|
||||
|
||||
For any sets `A`, `B`, and `C`,
|
||||
|
@ -115,8 +115,6 @@ C - (A ∩ B) = (C - A) ∪ (C - B)
|
|||
```
|
||||
-/
|
||||
|
||||
#check Set.diff_inter_diff
|
||||
|
||||
theorem de_morgans_law_i (A B C : Set α)
|
||||
: C \ (A ∪ B) = (C \ A) ∩ (C \ B) := calc C \ (A ∪ B)
|
||||
_ = { x | x ∈ C ∧ x ∉ A ∪ B } := rfl
|
||||
|
@ -131,7 +129,7 @@ theorem de_morgans_law_i (A B C : Set α)
|
|||
_ = { x | x ∈ C \ A ∧ x ∈ C \ B } := rfl
|
||||
_ = (C \ A) ∩ (C \ B) := rfl
|
||||
|
||||
#check Set.diff_inter
|
||||
#check Set.diff_inter_diff
|
||||
|
||||
theorem de_morgans_law_ii (A B C : Set α)
|
||||
: C \ (A ∩ B) = (C \ A) ∪ (C \ B) := calc C \ (A ∩ B)
|
||||
|
@ -147,6 +145,8 @@ theorem de_morgans_law_ii (A B C : Set α)
|
|||
_ = { x | x ∈ C \ A ∨ x ∈ C \ B } := rfl
|
||||
_ = (C \ A) ∪ (C \ B) := rfl
|
||||
|
||||
#check Set.diff_inter
|
||||
|
||||
/-! #### Identities Involving ∅
|
||||
|
||||
For any set `A`,
|
||||
|
@ -157,8 +157,6 @@ A ∩ (C - A) = ∅
|
|||
```
|
||||
-/
|
||||
|
||||
#check Set.union_empty
|
||||
|
||||
theorem emptyset_identity_i (A : Set α)
|
||||
: A ∪ ∅ = A := calc A ∪ ∅
|
||||
_ = { x | x ∈ A ∨ x ∈ ∅ } := rfl
|
||||
|
@ -166,7 +164,7 @@ theorem emptyset_identity_i (A : Set α)
|
|||
_ = { x | x ∈ A } := by simp
|
||||
_ = A := rfl
|
||||
|
||||
#check Set.inter_empty
|
||||
#check Set.union_empty
|
||||
|
||||
theorem emptyset_identity_ii (A : Set α)
|
||||
: A ∩ ∅ = ∅ := calc A ∩ ∅
|
||||
|
@ -175,7 +173,7 @@ theorem emptyset_identity_ii (A : Set α)
|
|||
_ = { x | False } := by simp
|
||||
_ = ∅ := rfl
|
||||
|
||||
#check Set.inter_diff_self
|
||||
#check Set.inter_empty
|
||||
|
||||
theorem emptyset_identity_iii (A C : Set α)
|
||||
: A ∩ (C \ A) = ∅ := calc A ∩ (C \ A)
|
||||
|
@ -185,6 +183,100 @@ theorem emptyset_identity_iii (A C : Set α)
|
|||
_ = { x | False } := by simp
|
||||
_ = ∅ := rfl
|
||||
|
||||
#check Set.inter_diff_self
|
||||
|
||||
/-! #### Monotonicity
|
||||
|
||||
For any sets `A`, `B`, and `C`,
|
||||
```
|
||||
A ⊆ B ⇒ A ∪ C ⊆ B ∪ C
|
||||
A ⊆ B ⇒ A ∩ C ⊆ B ∩ C
|
||||
A ⊆ B ⇒ ⋃ A ⊆ ⋃ B
|
||||
```
|
||||
-/
|
||||
|
||||
theorem monotonicity_i (A B C : Set α) (h : A ⊆ B)
|
||||
: A ∪ C ⊆ B ∪ C := by
|
||||
show ∀ x, x ∈ A ∪ C → x ∈ B ∪ C
|
||||
intro x hx
|
||||
apply Or.elim hx
|
||||
· intro hA
|
||||
have := h hA
|
||||
left
|
||||
exact this
|
||||
· intro hC
|
||||
right
|
||||
exact hC
|
||||
|
||||
#check Set.union_subset_union_left
|
||||
|
||||
theorem monotonicity_ii (A B C : Set α) (h : A ⊆ B)
|
||||
: A ∩ C ⊆ B ∩ C := by
|
||||
show ∀ x, x ∈ A ∩ C → x ∈ B ∩ C
|
||||
intro x hx
|
||||
have := h hx.left
|
||||
exact ⟨this, hx.right⟩
|
||||
|
||||
#check Set.inter_subset_inter_left
|
||||
|
||||
theorem monotonicity_iii (A B : Set (Set α)) (h : A ⊆ B)
|
||||
: ⋃₀ A ⊆ ⋃₀ B := by
|
||||
show ∀ x, x ∈ ⋃₀ A → x ∈ ⋃₀ B
|
||||
intro x hx
|
||||
have ⟨b, hb⟩ := hx
|
||||
have := h hb.left
|
||||
exact ⟨b, this, hb.right⟩
|
||||
|
||||
#check Set.sUnion_mono
|
||||
|
||||
/-! #### Anti-monotonicity
|
||||
|
||||
For any sets `A`, `B`, and `C`,
|
||||
```
|
||||
A ⊆ B ⇒ C - B ⊆ C - A
|
||||
∅ ≠ A ⊆ B ⇒ ⋂ B ⊆ ⋂ A
|
||||
```
|
||||
-/
|
||||
|
||||
theorem anti_monotonicity_i (A B C : Set α) (h : A ⊆ B)
|
||||
: C \ B ⊆ C \ A := by
|
||||
show ∀ x, x ∈ C \ B → x ∈ C \ A
|
||||
intro x hx
|
||||
have : x ∉ A := by
|
||||
by_contra nh
|
||||
have := h nh
|
||||
exact absurd this hx.right
|
||||
exact ⟨hx.left, this⟩
|
||||
|
||||
#check Set.diff_subset_diff_right
|
||||
|
||||
theorem anti_monotonicity_ii (A B : Set (Set α)) (h : A ⊆ B)
|
||||
: ⋂₀ B ⊆ ⋂₀ A := by
|
||||
show ∀ x, x ∈ ⋂₀ B → x ∈ ⋂₀ A
|
||||
intro x hx
|
||||
have : ∀ b, b ∈ B → x ∈ b := hx
|
||||
show ∀ a, a ∈ A → x ∈ a
|
||||
intro a ha
|
||||
exact this a (h ha)
|
||||
|
||||
#check Set.sInter_subset_sInter
|
||||
|
||||
/-- #### ∩/- Associativity
|
||||
|
||||
Let `A`, `B`, and `C` be sets. Then `A ∩ (B - C) = (A ∩ B) - C`.
|
||||
-/
|
||||
theorem inter_diff_assoc (A B C : Set α)
|
||||
: A ∩ (B \ C) = (A ∩ B) \ C := calc A ∩ (B \ C)
|
||||
_ = { x | x ∈ A ∧ x ∈ (B \ C) } := rfl
|
||||
_ = { x | x ∈ A ∧ (x ∈ B ∧ x ∉ C) } := rfl
|
||||
_ = { x | (x ∈ A ∧ x ∈ B) ∧ x ∉ C } := by
|
||||
ext _
|
||||
sorry
|
||||
_ = { x | x ∈ A ∩ B ∧ x ∉ C } := rfl
|
||||
_ = (A ∩ B) \ C := rfl
|
||||
|
||||
#check Set.inter_diff_assoc
|
||||
|
||||
/-- #### Exercise 2.1
|
||||
|
||||
Assume that `A` is the set of integers divisible by `4`. Similarly assume that
|
||||
|
|
Loading…
Reference in New Issue