Add LaTeX description of lemma 0a.
parent
c18b0e6f1d
commit
183765dd2e
|
@ -0,0 +1,22 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsfonts, amsthm}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{theorem}[Lemma 0A]
|
||||
|
||||
Assume that $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
||||
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter0.lean}{Enderton.Chapter0.lemma\_0a}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue