From 11d25dd28c7c4dd98e1a2a0ccabd0ccbe592067e Mon Sep 17 00:00:00 2001 From: Joshua Potter Date: Fri, 4 Aug 2023 08:54:11 -0600 Subject: [PATCH] Enderton. Begin adding theorem statements around ordering. --- Bookshelf/Avigad.lean | 2 +- Bookshelf/Enderton/Set.tex | 149 ++++++++++++++++++++++++++++++++++++- 2 files changed, 148 insertions(+), 3 deletions(-) diff --git a/Bookshelf/Avigad.lean b/Bookshelf/Avigad.lean index 3e10874..ab51323 100644 --- a/Bookshelf/Avigad.lean +++ b/Bookshelf/Avigad.lean @@ -3,4 +3,4 @@ import Bookshelf.Avigad.Chapter_3 import Bookshelf.Avigad.Chapter_4 import Bookshelf.Avigad.Chapter_5 import Bookshelf.Avigad.Chapter_7 -import Bookshelf.Avigad.Chapter_8 +import Bookshelf.Avigad.Chapter_8 \ No newline at end of file diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index 7a57cac..df7a282 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -433,6 +433,27 @@ For any sets $u$ and $v$, the \textbf{ordered pair} $\pair{u, v}$ is \end{definition} +\section{\defined{Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}}% +\hyperlabel{ref:ordering-natural-numbers} + +For \nameref{ref:natural-number}s $m$ and $n$, define $m$ to be + \textbf{less than} $n$ if and only if $m \in n$. +That is, $$m < n \iff m \in n.$$ +Likewise, define $m$ to be \textbf{less than or equal to} $n$ if and only if + $m \in n \lor m = n$. +That is, + \begin{align*} + m \leq n + & \iff m \mathop{\underline{\in}} n \\ + & \iff m < n \lor m = n. + \end{align*} + +\begin{definition} + + \lean*{Init/Prelude}{Nat.lt} + +\end{definition} + \section{\defined{Pair Set}}% \hyperlabel{ref:pair-set} @@ -7136,6 +7157,87 @@ Show that $<_L$ is a linear ordering on $A \times B$. \end{proof} +\section{Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}% +\hyperlabel{sec:ordering-natural-numbers} + +\subsection{\unverified{Ordering on Successor}}% +\hyperlabel{sub:ordering-successor} + +\begin{lemma}[8] + + Let $m, n \in \omega$. + Then $m < n^+ \iff m \leq n$. + +\end{lemma} + +\begin{proof} + + Let $m, n \in \omega$. + By \nameref{ref:ordering-natural-numbers}, + \begin{align*} + m < n^+ + & \iff m \in n^+ \\ + & \iff m \in n \cup \{n\} & \textref{ref:successor} \\ + & \iff m \in n \lor m \in \{n\} \\ + & \iff m \in n \lor m = n \\ + & \iff m \leq n. + \end{align*} + +\end{proof} + +\subsection{\sorry{Lemma 4L}}% +\hyperlabel{sub:lemma-4l} + +\begin{lemma}[4L] + + \begin{enumerate}[(a)] + \item For any natural numbers $m$ and $n$, $$m \in n \iff m^+ \in n^+.$$ + \item No natural number is a member of itself. + \end{enumerate} + +\end{lemma} + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\sorry{% + Trichotomy Law for \texorpdfstring{$\omega$}{Natural Numbers}}}% +\hyperlabel{sub:trichotomy-law-natrual-numbers} + +\begin{theorem} + + For any natural numbers $m$ and $n$, exactly one of the three conditions + $$m \in n, \quad m = n, \quad n \in m$$ holds. + +\end{theorem} + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\sorry{% + Linear Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}}% +\hyperlabel{sub:linear-ordering-natural-numbers} + +\begin{theorem} + + Relation + $$\in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\}$$ + is a linear ordering on $\omega$. + +\end{theorem} + +\begin{proof} + + TODO + +\end{proof} + \section{Exercises 4}% \hyperlabel{sec:exercises-4} @@ -7550,14 +7652,57 @@ Complete the proof of \nameref{sub:theorem-4k-5}. \end{proof} -\subsection{\sorry{Exercise 4.17}}% +\subsection{\verified{Exercise 4.17}}% \hyperlabel{sub:exercise-4.17} Prove that $m^{n+p} = m^n \cdot m^p$. \begin{proof} - TODO + \lean{Data/Nat/Lemmas}{Nat.pow\_add} + + Let $m$ and $n$ be \nameref{ref:natural-number}s and define + \begin{equation} + \hyperlabel{sub:exercise-4.17-eq1} + S = \{p \in \omega \mid m^{n+p} = m^n \cdot m^p\}. + \end{equation} + We prove that (i) $0 \in S$ and (ii) if $p \in S$ then $p^+ \in S$. + Afterwards we show that (iii) our theorem holds. + + \paragraph{(i)}% + \hyperlabel{par:exercise-4.17-i} + + Consider $m^{n+0}$: + \begin{align*} + m^{n+0} + & = m^n & \textref{sub:theorem-4i} \\ + & = m^n \cdot 1 & \textref{sub:right-multiplicative-identity} \\ + & = m^n \cdot m^0. & \textref{ref:exponentiation} + \end{align*} + Thus $0 \in S$. + + \paragraph{(ii)}% + \hyperlabel{par:exercise-4.17-ii} + + Suppose $p \in S$. + Now consider $m^{n+p^+}$: + \begin{align*} + m^{n+p^+} + & = m^{(n + p)^+} & \textref{sub:theorem-4i} \\ + & = E_m(n + p) \cdot m & \textref{ref:exponentiation} \\ + & = m^n \cdot m^p \cdot m & \eqref{sub:exercise-4.17-eq1} \\ + & = m^n \cdot (m^p \cdot m) & \textref{sub:theorem-4k-4} \\ + & = m^n \cdot m^{p^+}. & \textref{ref:exponentiation} + \end{align*} + Thus $p^+ \in S$. + + \paragraph{(iii)}% + + By \nameref{par:exercise-4.17-i} and \nameref{par:exercise-4.17-ii}, + $S \subseteq \omega$ is an \nameref{ref:inductive-set}. + By \nameref{sub:theorem-4b}, $S = \omega$. + Thus for all $m, n, p \in \omega$, it follows that + $m^{n+p} = m^n \cdot m^p$. \end{proof}