Apostol chapter 1.12.
parent
0f06c4e573
commit
11b6e114af
|
@ -51,6 +51,19 @@ Such a number $B$ is also known as the \textbf{greatest lower bound}.
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\partial{Integral of Step Function}}%
|
||||
\label{sec:def-integral-step-function}
|
||||
|
||||
Lset $s$ be a \nameref{sec:def-step-function} defined on $[a, b]$, and let
|
||||
$P = \{x_0, x_1, \ldots, x_n\}$ be a \nameref{sec:def-partition} of $[a, b]$
|
||||
such that $s$ is constant on the open subintervals of $P$.
|
||||
Denote by $s_k$ the constant value that $s$ takes in the $k$th open subinterval,
|
||||
so that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k,
|
||||
\quad k = 1, 2, \ldots, n.$$
|
||||
The \textbf{integral of $s$ from $a$ to $b$}, denoted by the symbol
|
||||
$\int_a^b s(x)\mathop{dx}$, is defined by the following formula:
|
||||
$$\int_a^b s(x) \mathop{dx} = \sum_{k=1}^n s_k \cdot (x_k - x_{k-1}).$$
|
||||
|
||||
\section{\defined{Partition}}%
|
||||
\label{sec:def-partition}
|
||||
|
||||
|
|
Loading…
Reference in New Issue