Add missing definitions to the glossary.
parent
1cff1c63c4
commit
0f06c4e573
|
@ -20,6 +20,37 @@
|
||||||
\chapter{Glossary}%
|
\chapter{Glossary}%
|
||||||
\label{chap:glossary}
|
\label{chap:glossary}
|
||||||
|
|
||||||
|
\section{\defined{Characteristic Function}}%
|
||||||
|
\label{sec:def-characteristic-function}
|
||||||
|
|
||||||
|
Let $S$ be a set of points on the real line.
|
||||||
|
The \textbf{characteristic function} of $S$ is the function $\mathcal{X}_S$ such
|
||||||
|
that $\mathcal{X}_S(x) = 1$ for every $x$ in $S$, and $\mathcal{X}_S(x) = 0$
|
||||||
|
for those $x$ not in $S$.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean{Common/Set/Basic}{Set.characteristic}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\section{\defined{Infimum}}%
|
||||||
|
\label{sec:def-infimum}
|
||||||
|
|
||||||
|
A number $B$ is called an \textbf{infimum} of a nonempty set $S$ if $B$ has
|
||||||
|
the following two properties:
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item $B$ is a lower bound for $S$.
|
||||||
|
\item No number greater than $B$ is a lower bound for $S$.
|
||||||
|
\end{enumerate}
|
||||||
|
Such a number $B$ is also known as the \textbf{greatest lower bound}.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean{Mathlib/Order/Bounds/Basic}{IsGLB}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\section{\defined{Partition}}%
|
\section{\defined{Partition}}%
|
||||||
\label{sec:def-partition}
|
\label{sec:def-partition}
|
||||||
|
|
||||||
|
@ -42,16 +73,26 @@ A collection of points satisfying \eqref{sec:partition-eq1} is called a
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
\section{\partial{Refinement}}%
|
||||||
|
\label{sec:def-refinement}
|
||||||
|
|
||||||
|
Let $P$ be a \nameref{sec:def-partition} of closed interval $[a, b]$.
|
||||||
|
A \textbf{refinement} $P'$ of $P$ is a partition formed by adjoining more
|
||||||
|
subdivision points to those already in $P$.
|
||||||
|
|
||||||
|
$P'$ is said to be \textbf{finer than} $P$. The union of two partitions $P_1$
|
||||||
|
and $P_2$ is called the \textbf{common refinement} of $P_1$ and $P_2$.
|
||||||
|
|
||||||
\section{\defined{Step Function}}%
|
\section{\defined{Step Function}}%
|
||||||
\label{sec:def-step-function}
|
\label{sec:def-step-function}
|
||||||
|
|
||||||
A function $s$, whose domain is a closed interval $[a, b]$, is called a step
|
A function $s$, whose domain is a closed interval $[a, b]$, is called a
|
||||||
function if there is a \nameref{sec:def-partition}
|
\textbf{step function} if there is a \nameref{sec:def-partition}
|
||||||
$P = \{x_0, x_1, \ldots, x_n\}$ of $[a b]$ such that $s$ is constant on each
|
$P = \{x_0, x_1, \ldots, x_n\}$ of $[a, b]$ such that $s$ is constant on each
|
||||||
open subinterval of $P$.
|
open subinterval of $P$.
|
||||||
That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
|
That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
|
||||||
such that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k.$$
|
such that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k.$$
|
||||||
Step functions are sometimes called piecewise constant functions.
|
Step functions are sometimes called \textbf{piecewise constant functions}.
|
||||||
|
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\noindent
|
\noindent
|
||||||
|
@ -64,9 +105,38 @@ Step functions are sometimes called piecewise constant functions.
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
\section{\defined{Supremum}}%
|
||||||
|
\label{sec:def-supremum}
|
||||||
|
|
||||||
|
A number $B$ is called a \textbf{supremum} of a nonempty set $S$ if $B$ has
|
||||||
|
the following two properties:
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item $B$ is an upper bound for $S$.
|
||||||
|
\item No number less than $B$ is an upper bound for $S$.
|
||||||
|
\end{enumerate}
|
||||||
|
Such a number $B$ is also known as the \textbf{least upper bound}.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean{Mathlib/Order/Bounds/Basic}{IsLUB}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\chapter{A Set of Axioms for the Real-Number System}%
|
\chapter{A Set of Axioms for the Real-Number System}%
|
||||||
\label{chap:set-axioms-real-number-system}
|
\label{chap:set-axioms-real-number-system}
|
||||||
|
|
||||||
|
\section{\defined{Completeness Axiom}}%
|
||||||
|
\label{sec:completeness-axiom}
|
||||||
|
|
||||||
|
Every nonempty set $S$ of real numbers which is bounded above has a supremum;
|
||||||
|
that is, there is a real number $B$ such that $B = \sup{S}$.
|
||||||
|
|
||||||
|
\begin{axiom}
|
||||||
|
|
||||||
|
\lean{Mathlib/Data/Real/Basic}{Real.exists\_isLUB}
|
||||||
|
|
||||||
|
\end{axiom}
|
||||||
|
|
||||||
\section{\verified{Lemma 1}}%
|
\section{\verified{Lemma 1}}%
|
||||||
\label{sec:lemma-1}
|
\label{sec:lemma-1}
|
||||||
|
|
||||||
|
@ -80,8 +150,8 @@ Nonempty set $S$ has supremum $L$ if and only if set $-S$ has infimum $-L$.
|
||||||
\divider
|
\divider
|
||||||
|
|
||||||
Suppose $L = \sup{S}$ and fix $x \in S$.
|
Suppose $L = \sup{S}$ and fix $x \in S$.
|
||||||
By definition of the supremum, $x \leq L$ and $L$ is the smallest value
|
By definition of the \nameref{sec:def-supremum}, $x \leq L$ and $L$ is the
|
||||||
satisfying this inequality.
|
smallest value satisfying this inequality.
|
||||||
Negating both sides of the inequality yields $-x \geq -L$.
|
Negating both sides of the inequality yields $-x \geq -L$.
|
||||||
Furthermore, $-L$ must be the largest value satisfying this inequality.
|
Furthermore, $-L$ must be the largest value satisfying this inequality.
|
||||||
Therefore $-L = \inf{-S}$.
|
Therefore $-L = \inf{-S}$.
|
||||||
|
@ -103,7 +173,8 @@ Every nonempty set $S$ that is bounded below has a greatest lower bound; that
|
||||||
|
|
||||||
Let $S$ be a nonempty set bounded below by $x$.
|
Let $S$ be a nonempty set bounded below by $x$.
|
||||||
Then $-S$ is nonempty and bounded above by $x$.
|
Then $-S$ is nonempty and bounded above by $x$.
|
||||||
By the completeness axiom, there exists a supremum $L$ of $-S$.
|
By the \nameref{sec:completeness-axiom}, there exists a
|
||||||
|
\nameref{sec:def-supremum} $L$ of $-S$.
|
||||||
By \nameref{sec:lemma-1}, $L$ is a supremum of $-S$ if and only if $-L$ is an
|
By \nameref{sec:lemma-1}, $L$ is a supremum of $-S$ if and only if $-L$ is an
|
||||||
infimum of $S$.
|
infimum of $S$.
|
||||||
|
|
||||||
|
@ -130,8 +201,8 @@ For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\section{\verified{Theorem I.30}}%
|
\section{\verified{Archimedean Property of the Reals}}%
|
||||||
\label{sec:theorem-i.30}
|
\label{sec:archimedean-property-reals}
|
||||||
|
|
||||||
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive
|
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive
|
||||||
integer $n$ such that $nx > y$.
|
integer $n$ such that $nx > y$.
|
||||||
|
@ -182,8 +253,8 @@ If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
||||||
|
|
||||||
Suppose $x > a$.
|
Suppose $x > a$.
|
||||||
Then there exists some $c > 0$ such that $a + c = x$.
|
Then there exists some $c > 0$ such that $a + c = x$.
|
||||||
By \nameref{sec:theorem-i.30}, there exists an integer $n > 0$ such that
|
By \nameref{sec:archimedean-property-reals}, there exists an integer $n > 0$
|
||||||
$nc > y$.
|
such that $nc > y$.
|
||||||
Rearranging terms, we see $y / n < c$.
|
Rearranging terms, we see $y / n < c$.
|
||||||
Therefore $a + y / n < a + c = x$.
|
Therefore $a + y / n < a + c = x$.
|
||||||
But by hypothesis, $x \leq a + y / n$.
|
But by hypothesis, $x \leq a + y / n$.
|
||||||
|
@ -220,8 +291,8 @@ If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
||||||
|
|
||||||
Suppose $x < a$.
|
Suppose $x < a$.
|
||||||
Then there exists some $c > 0$ such that $x = a - c$.
|
Then there exists some $c > 0$ such that $x = a - c$.
|
||||||
By \nameref{sec:theorem-i.30}, there exists an integer $n > 0$ such that
|
By \nameref{sec:archimedean-property-reals}, there exists an integer $n > 0$
|
||||||
$nc > y$.
|
such that $nc > y$.
|
||||||
Rearranging terms, we see that $y / n < c$.
|
Rearranging terms, we see that $y / n < c$.
|
||||||
Therefore $a - y / n > a - c = x$.
|
Therefore $a - y / n > a - c = x$.
|
||||||
But by hypothesis, $x \geq a - y / n$.
|
But by hypothesis, $x \geq a - y / n$.
|
||||||
|
@ -257,7 +328,8 @@ If $S$ has a supremum, then for some $x$ in $S$ we have $x > \sup{S} - h$.
|
||||||
|
|
||||||
\divider
|
\divider
|
||||||
|
|
||||||
By definition of a supremum, $\sup{S}$ is the least upper bound of $S$.
|
By definition of a \nameref{sec:def-supremum}, $\sup{S}$ is the least upper
|
||||||
|
bound of $S$.
|
||||||
For the sake of contradiction, suppose for all $x \in S$,
|
For the sake of contradiction, suppose for all $x \in S$,
|
||||||
$x \leq \sup{S} - h$.
|
$x \leq \sup{S} - h$.
|
||||||
This immediately implies $\sup{S} - h$ is an upper bound of $S$.
|
This immediately implies $\sup{S} - h$ is an upper bound of $S$.
|
||||||
|
@ -280,7 +352,8 @@ If $S$ has an infimum, then for some $x$ in $S$ we have $x < \inf{S} + h$.
|
||||||
|
|
||||||
\divider
|
\divider
|
||||||
|
|
||||||
By definition of an infimum, $\inf{S}$ is the greatest lower bound of $S$.
|
By definition of an \nameref{sec:def-infimum}, $\inf{S}$ is the greatest lower
|
||||||
|
bound of $S$.
|
||||||
For the sake of contradiction, suppose for all $x \in S$,
|
For the sake of contradiction, suppose for all $x \in S$,
|
||||||
$x \geq \inf{S} + h$.
|
$x \geq \inf{S} + h$.
|
||||||
This immediately implies $\inf{S} + h$ is a lower bound of $S$.
|
This immediately implies $\inf{S} + h$ is a lower bound of $S$.
|
||||||
|
@ -321,7 +394,7 @@ If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and
|
||||||
Let $x \in C$.
|
Let $x \in C$.
|
||||||
By definition of $C$, there exist elements $a' \in A$ and $b' \in B$ such
|
By definition of $C$, there exist elements $a' \in A$ and $b' \in B$ such
|
||||||
that $x = a' + b'$.
|
that $x = a' + b'$.
|
||||||
By definition of a supremum, $a' \leq \sup{A}$.
|
By definition of a \nameref{sec:def-supremum}, $a' \leq \sup{A}$.
|
||||||
Likewise, $b' \leq \sup{B}$.
|
Likewise, $b' \leq \sup{B}$.
|
||||||
Therefore $a' + b' \leq \sup{A} + \sup{B}$.
|
Therefore $a' + b' \leq \sup{A} + \sup{B}$.
|
||||||
Since $x = a' + b'$ was arbitrarily chosen, it follows $\sup{A} + \sup{B}$
|
Since $x = a' + b'$ was arbitrarily chosen, it follows $\sup{A} + \sup{B}$
|
||||||
|
@ -390,7 +463,7 @@ If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and
|
||||||
Let $x \in C$.
|
Let $x \in C$.
|
||||||
By definition of $C$, there exist elements $a' \in A$ and $b' \in B$ such
|
By definition of $C$, there exist elements $a' \in A$ and $b' \in B$ such
|
||||||
that $x = a' + b'$.
|
that $x = a' + b'$.
|
||||||
By definition of an infimum, $a' \geq \inf{A}$.
|
By definition of an \nameref{sec:def-infimum}, $a' \geq \inf{A}$.
|
||||||
Likewise, $b' \geq \inf{B}$.
|
Likewise, $b' \geq \inf{B}$.
|
||||||
Therefore $a' + b' \geq \inf{A} + \inf{B}$.
|
Therefore $a' + b' \geq \inf{A} + \inf{B}$.
|
||||||
Since $x = a' + b'$ was arbitrarily chosen, it follows $\inf{A} + \inf{B}$
|
Since $x = a' + b'$ was arbitrarily chosen, it follows $\inf{A} + \inf{B}$
|
||||||
|
@ -577,7 +650,7 @@ A set consisting of a single point.
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
Let $S$ be a set consisting of a single point.
|
Let $S$ be a set consisting of a single point.
|
||||||
By definition of a Point, $S$ is a rectangle in which all vertices coincide.
|
By definition of a point, $S$ is a rectangle in which all vertices coincide.
|
||||||
By \nameref{sec:choice-scale}, $S$ is measurable with area its width times
|
By \nameref{sec:choice-scale}, $S$ is measurable with area its width times
|
||||||
its height.
|
its height.
|
||||||
The width and height of $S$ is trivially zero.
|
The width and height of $S$ is trivially zero.
|
||||||
|
@ -658,7 +731,7 @@ The union of a finite collection of line segments in a plane.
|
||||||
\paragraph{Base Case}%
|
\paragraph{Base Case}%
|
||||||
|
|
||||||
Consider a set $S$ consisting of a single line segment in a plane.
|
Consider a set $S$ consisting of a single line segment in a plane.
|
||||||
By definition of a Line Segment, $S$ is a rectangle in which one side has
|
By definition of a line segment, $S$ is a rectangle in which one side has
|
||||||
dimension $0$.
|
dimension $0$.
|
||||||
By \nameref{sec:choice-scale}, $S$ is measurable with area its width $w$
|
By \nameref{sec:choice-scale}, $S$ is measurable with area its width $w$
|
||||||
times its height $h$.
|
times its height $h$.
|
||||||
|
@ -1271,8 +1344,7 @@ $\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$
|
||||||
|
|
||||||
\divider
|
\divider
|
||||||
|
|
||||||
This is immediately proven by applying Hermite's Identity as shown in
|
This is immediately proven by applying \nameref{sec:hermites-identity}.
|
||||||
\nameref{sec:exercise-1.11.5}.
|
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -1288,20 +1360,17 @@ $\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$
|
||||||
|
|
||||||
\divider
|
\divider
|
||||||
|
|
||||||
This is immediately proven by applying Hermite's Identity as shown in
|
This is immediately proven by applying \nameref{sec:hermites-identity}.
|
||||||
\nameref{sec:exercise-1.11.5}.
|
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\section{\partial{Exercise 1.11.5}}%
|
\section{\partial{Hermite's Identity}}%
|
||||||
\label{sec:exercise-1.11.5}
|
\label{sec:hermites-identity}
|
||||||
|
|
||||||
The formulas in Exercises 4(d) and 4(e) suggest a generalization for
|
The formulas in Exercises 4(d) and 4(e) suggest a generalization for
|
||||||
$\floor{nx}$.
|
$\floor{nx}$.
|
||||||
State and prove such a generalization.
|
State and prove such a generalization.
|
||||||
|
|
||||||
\note{The stated generalization is known as "Hermite's Identity."}
|
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
||||||
|
@ -1568,11 +1637,10 @@ Now apply Exercises 4(a) and (b) to the bracket on the right.
|
||||||
\label{sec:exercise-1.11.8}
|
\label{sec:exercise-1.11.8}
|
||||||
|
|
||||||
Let $S$ be a set of points on the real line.
|
Let $S$ be a set of points on the real line.
|
||||||
The \textit{characteristic function} of $S$ is, by definition, the function
|
Let $\mathcal{X}_S$ denote the \nameref{sec:def-characteristic-function} of $S$.
|
||||||
$\mathcal{X}_S$ such that $\mathcal{X}_S(x) = 1$ for every $x$ in $S$, and
|
Let $f$ be a \nameref{sec:def-step-function} which takes the constant value
|
||||||
$\mathcal{X}_S(x) = 0$ for those $x$ not in $S$.
|
$c_k$ on the $k$th open subinterval $I_k$ of some partition of an interval
|
||||||
Let $f$ be a step function which takes the constant value $c_k$ on the $k$th
|
$[a, b]$.
|
||||||
open subinterval $I_k$ of some partition of an interval $[a, b]$.
|
|
||||||
Prove that for each $x$ in the union $I_1 \cup I_2 \cup \cdots \cup I_n$ we have
|
Prove that for each $x$ in the union $I_1 \cup I_2 \cup \cdots \cup I_n$ we have
|
||||||
$$f(x) = \sum_{k=1}^n c_k\mathcal{X}_{I_k}(x).$$
|
$$f(x) = \sum_{k=1}^n c_k\mathcal{X}_{I_k}(x).$$
|
||||||
This property is described by saying that every step function is a linear
|
This property is described by saying that every step function is a linear
|
||||||
|
@ -1583,7 +1651,7 @@ This property is described by saying that every step function is a linear
|
||||||
Let $x \in I_1 \cup I_2 \cup \cdots \cup I_n$ and $N = \{1, \ldots, n\}$.
|
Let $x \in I_1 \cup I_2 \cup \cdots \cup I_n$ and $N = \{1, \ldots, n\}$.
|
||||||
Let $k \in N$ such that $x \in I_k$.
|
Let $k \in N$ such that $x \in I_k$.
|
||||||
Consider an arbitrary $j \in N - \{k\}$.
|
Consider an arbitrary $j \in N - \{k\}$.
|
||||||
By definition of a partition, $I_j \cap I_k = \emptyset$.
|
By definition of a nameref{sec:def-partition}, $I_j \cap I_k = \emptyset$.
|
||||||
That is, $I_j$ and $I_k$ are disjoint for all $j \in N - \{k\}$.
|
That is, $I_j$ and $I_k$ are disjoint for all $j \in N - \{k\}$.
|
||||||
Therefore, by definition of the characteristic function,
|
Therefore, by definition of the characteristic function,
|
||||||
$\mathcal{X}_{I_k}(x) = 1$ and $\mathcal{X}_{I_j}(x) = 0$ for all
|
$\mathcal{X}_{I_k}(x) = 1$ and $\mathcal{X}_{I_j}(x) = 0$ for all
|
||||||
|
|
Loading…
Reference in New Issue