diff --git a/Bookshelf/Apostol.tex b/Bookshelf/Apostol.tex index 4225e87..17ce443 100644 --- a/Bookshelf/Apostol.tex +++ b/Bookshelf/Apostol.tex @@ -63,6 +63,9 @@ Denote by $s_k$ the constant value that $s$ takes in the $k$th open subinterval, The \textbf{integral of $s$ from $a$ to $b$}, denoted by the symbol $\int_a^b s(x)\mathop{dx}$, is defined by the following formula: $$\int_a^b s(x) \mathop{dx} = \sum_{k=1}^n s_k \cdot (x_k - x_{k-1}).$$ +Furthermore, we define + $$\int_b^a s(x) \mathop{dx} = -\int_a^b s(x) \mathop{dx} \quad\text{and}\quad + \int_a^a s(x) \mathop{dx} = 0.$$ \section{\defined{Partition}}% \label{sec:def-partition} @@ -1803,16 +1806,16 @@ If $s(x) < t(x)$ for every $x$ in $[a, b]$, then \section{\partial{Additivity With Respect to the Interval of Integration}}% \label{sec:step-additivity-with-respect-interval-integration} -Let $s$ be a \nameref{sec:def-step-function} on closed interval $[a, b]$. +Let $a, b, c \in \mathbb{R}$ and $s$ a \nameref{sec:def-step-function} on the + smallest closed interval containing them. Then - $$\int_a^c s(x) \mathop{dx} + \int_c^b s(x) \mathop{dx} = - \int_a^b s(x) \mathop{dx} \quad\text{if}\quad a < c < b.$$ - -\todo{This holds for any arrangement of values $a$, $b$, and $c$.} + $$\int_a^c s(x) \mathop{dx} + \int_c^b s(x) \mathop{dx} + + \int_b^a s(x) \mathop{dx} = 0.$$ \begin{proof} - Let $s$ be a step function on closed interval $[a, b]$. + WLOG, suppose $a < c < b$ and $s$ be a step function on closed interval + $[a, b]$. By definition of a step function, there exists a \nameref{sec:def-partition} $P$ such that $s$ is constant on each open subinterval of $P$. @@ -1829,6 +1832,14 @@ Then \sum_{k=i+1}^n s_k \cdot (x_k - x_{k - 1}) \\ & = \int_a^c s(x) \mathop{dx} + \int_c^b s(x) \mathop{dx}. \end{align*} + Rearranging terms shows + \begin{align*} + 0 + & = \int_a^c s(x) \mathop{dx} + \int_c^b s(x) \mathop{dx} - + \int_a^b s(x) \mathop{dx} \\ + & = \int_a^c s(x) \mathop{dx} + \int_c^b s(x) \mathop{dx} + + \int_b^a s(x) \mathop{dx}. + \end{align*} \end{proof} @@ -1873,9 +1884,7 @@ Then Let $s$ be a step function on closed interval $[a, b]$. Then $$\int_{ka}^{kb} s \left( \frac{x}{k} \right) \mathop{dx} = - k \int_a^b s(x) \mathop{dx} \quad\text{for every } k > 0.$$ - -\todo{This also holds for negative values of $k$.} + k \int_a^b s(x) \mathop{dx} \quad\text{for every } k \neq 0.$$ \begin{proof} @@ -1885,22 +1894,60 @@ Then subinterval of $P$. Let $s_i$ denote the value of $s$ on the $i$th open subinterval of $P$. - Let $k > 0$ be a real number. - Then $t(x) = s(x / k)$ is a step function on closed interval $[ka, kb]$ - with partition $Q = \{kx_0, kx_1, \ldots, kx_n\}$. - Furthermore, $t$ is constant on each open subinterval of $Q$. - Let $t_i$ denote the value of $t$ on the $i$th open subinterval of $Q$. - By construction, $t_i = s_i$. + Let $k \neq 0$ be a real number. + There are two cases to consider: - By definition of the \nameref{sec:def-integral-step-function}, - \begin{align*} - \int_{ka}^{kb} s(x / k) \mathop{dx} - & = \int_{ka}^{kb} t(x) \mathop{dx} \\ - & = \sum_{i=1}^n t_i \cdot (kx_i - kx_{i-1}) \\ - & = k \sum_{i=1}^n t_i \cdot (x_i - x_{i-1}) \\ - & = k \sum_{i=1}^n s_i \cdot(x_i - x_{i-1}) \\ - & = k \int_a^b s(x) \mathop{dx}. - \end{align*} + \paragraph{Case 1}% + + Suppose $k > 0$. + Then $t(x) = s(x / k)$ is a step function on closed interval $[ka, kb]$ + with partition $Q = \{kx_0, kx_1, \ldots, kx_n\}$. + Furthermore $t_i = s_i$. + By definition of the \nameref{sec:def-integral-step-function}, + \begin{align*} + \int_{ka}^{kb} s(x / k) \mathop{dx} + & = \int_{ka}^{kb} t(x) \mathop{dx} \\ + & = \sum_{i=1}^n t_i \cdot (kx_i - kx_{i-1}) \\ + & = k \sum_{i=1}^n t_i \cdot (x_i - x_{i-1}) \\ + & = k \sum_{i=1}^n s_i \cdot(x_i - x_{i-1}) \\ + & = k \int_a^b s(x) \mathop{dx}. + \end{align*} + + \paragraph{Case 2}% + + Let $k < 0$ be a real number. + Then $t(x) = s(x / k)$ is a step function on closed interval $[kb, ka]$ + with partition $Q = \{kx_n, kx_{n-1}, \ldots, kx_0\}$. + Furthermore $t_i = s_i$. + By definition of the \nameref{sec:def-integral-step-function}, + \begin{align*} + \int_{ka}^{kb} s(x / k) \mathop{dx} + & = -\int_{kb}^{ka} s(x / k) \mathop{dx} \\ + & = -\int_{kb}^{ka} t(x) \mathop{dx} \\ + & = -\sum_{i=1}^n t_i \cdot (kx_{i-1} - kx_i) \\ + & = -\sum_{i=1}^n s_i \cdot (kx_{i-1} - kx_i) \\ + & = -\sum_{i=1}^n s_i \cdot (-k) \cdot (x_i - x_{i-1}) \\ + & = k \sum_{i=1}^n s_i \cdot (x_i - x_{i-1}) \\ + & = k \int_a^b s(x) \mathop{dx}. + \end{align*} + +\end{proof} + +\section{\partial{Reflection Property}}% +\label{sec:step-reflection-property} + +Let $s$ be a step function on closed interval $[a, b]$. +Then + $$\int_a^b s(x) \mathop{dx} = - \int_{-b}^{-a} s(-x) \mathop{dx}.$$ + +\begin{proof} + + Let $k = -1$. + By \nameref{sec:step-expansion-contraction-interval-integration}, + $$\int_{-a}^{-b} s \left( \frac{x}{-1} \right) = + -\int_a^b s(x) \mathop{dx}.$$ + Simplifying the left-hand side of the above identity, and multiplying both + sides by $-1$ yields the desired result. \end{proof}