Apostol Chapter 1.11, exercise 4c.
parent
ed89078e76
commit
0a8aa466c6
|
@ -49,7 +49,29 @@ theorem exercise_4b_2 (x : ℝ) (h : ∃ n : ℤ, x ∈ Set.Ioo ↑n (↑n + (1
|
|||
-/
|
||||
theorem exercise_4c (x y : ℝ)
|
||||
: ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ ∨ ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ + 1 := by
|
||||
sorry
|
||||
have hx : x = Int.floor x + Int.fract x := Eq.symm (add_eq_of_eq_sub' rfl)
|
||||
have hy : y = Int.floor y + Int.fract y := Eq.symm (add_eq_of_eq_sub' rfl)
|
||||
by_cases Int.fract x + Int.fract y < 1
|
||||
· refine Or.inl ?_
|
||||
rw [Int.floor_eq_iff]
|
||||
simp only [Int.cast_add]
|
||||
apply And.intro
|
||||
· exact add_le_add (Int.floor_le x) (Int.floor_le y)
|
||||
· conv => lhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
||||
rwa [add_comm, ← add_assoc, ← sub_lt_iff_lt_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
||||
· refine Or.inr ?_
|
||||
rw [Int.floor_eq_iff]
|
||||
simp only [Int.cast_add, Int.cast_one]
|
||||
have h := le_of_not_lt h
|
||||
apply And.intro
|
||||
· conv => lhs; rw [← add_rotate]
|
||||
conv => rhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
||||
rwa [← sub_le_iff_le_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
||||
· conv => lhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
||||
conv => lhs; rw [add_comm, ← add_assoc]
|
||||
conv => rhs; rw [add_assoc]
|
||||
rw [← sub_lt_iff_lt_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
||||
exact add_lt_add (Int.fract_lt_one x) (Int.fract_lt_one y)
|
||||
|
||||
/-- ### Exercise 4d
|
||||
|
||||
|
@ -73,7 +95,7 @@ The formulas in Exercises 4(d) and 4(e) suggest a generalization for `⌊nx⌋`.
|
|||
State and prove such a generalization.
|
||||
-/
|
||||
theorem exercise_5 (n : ℕ) (x : ℝ)
|
||||
: ⌊n * x⌋ = 10 := by
|
||||
: True := by
|
||||
sorry
|
||||
|
||||
/-- ### Exercise 7b
|
||||
|
|
|
@ -39,7 +39,12 @@ $\floor{-x} =
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{exercise\_4b}
|
||||
\ % Force space prior to *Proof.*
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item \link{exercise\_4b\_1}
|
||||
\item \link{exercise\_4b\_2}
|
||||
\end{enumerate}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
@ -136,7 +141,7 @@ Now apply Exercises 4(a) and (b) to the bracket on the right.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\link{exercise\_7b}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
Loading…
Reference in New Issue