From 0744023a9d77661978dd956eca448828f5a38483 Mon Sep 17 00:00:00 2001 From: Joshua Potter Date: Sat, 13 May 2023 09:32:13 -0600 Subject: [PATCH] Clean-up section colors. --- Bookshelf/Apostol.tex | 24 ++++++++++++------------ Bookshelf/Enderton.tex | 6 ------ 2 files changed, 12 insertions(+), 18 deletions(-) diff --git a/Bookshelf/Apostol.tex b/Bookshelf/Apostol.tex index 1afecaf..349aa41 100644 --- a/Bookshelf/Apostol.tex +++ b/Bookshelf/Apostol.tex @@ -569,7 +569,7 @@ If there is one and only one number $c$ which satisfies the inequalities Prove that each of the following sets is measurable and has zero area: -\subsection{\unverified{Exercise 1.7.1a}}% +\subsection{\partial{Exercise 1.7.1a}}% \label{sub:exercise-1.7.1a} A set consisting of a single point. @@ -585,7 +585,7 @@ A set consisting of a single point. \end{proof} -\subsection{\unverified{Exercise 1.7.1b}}% +\subsection{\partial{Exercise 1.7.1b}}% \label{sub:exercise-1.7.1b} A set consisting of a finite number of points in a plane. @@ -644,7 +644,7 @@ A set consisting of a finite number of points in a plane. \end{proof} -\subsection{\unverified{Exercise 1.7.1c}}% +\subsection{\partial{Exercise 1.7.1c}}% \label{sub:exercise-1.7.1c} The union of a finite collection of line segments in a plane. @@ -707,7 +707,7 @@ The union of a finite collection of line segments in a plane. \end{proof} -\section{\unverified{Exercise 1.7.2}}% +\section{\partial{Exercise 1.7.2}}% \label{sec:exercise-1.7.2} Every right triangular region is measurable because it can be obtained as the @@ -758,7 +758,7 @@ Prove that every triangular region is measurable and that its area is one half \end{proof} -\section{\unverified{Exercise 1.7.3}}% +\section{\partial{Exercise 1.7.3}}% \label{sec:exercise-1.7.3} Prove that every trapezoid and every parallelogram is measurable and derive the @@ -871,7 +871,7 @@ Let $P$ be a polygon whose vertices are lattice points. The area of $P$ is $I + \frac{1}{2}B - 1$, where $I$ denotes the number of lattice points inside the polygon and $B$ denotes the number on the boundary. -\subsection{\unverified{Exercise 1.7.4a}}% +\subsection{\partial{Exercise 1.7.4a}}% \label{sub:exercise-1.7.4a} Prove that the formula is valid for rectangles with sides parallel to the @@ -899,7 +899,7 @@ Prove that the formula is valid for rectangles with sides parallel to the \end{proof} -\subsection{\unverified{Exercise 1.7.4b}}% +\subsection{\partial{Exercise 1.7.4b}}% \label{sub:exercise-1.7.4b} Prove that the formula is valid for right triangles and parallelograms. @@ -948,7 +948,7 @@ Prove that the formula is valid for right triangles and parallelograms. \end{proof} -\subsection{\unverified{Exercise 1.7.4c}}% +\subsection{\partial{Exercise 1.7.4c}}% \label{sub:exercise-1.7.4c} Use induction on the number of edges to construct a proof for general polygons. @@ -1014,7 +1014,7 @@ Use induction on the number of edges to construct a proof for general polygons. \end{proof} -\section{\unverified{Exercise 1.7.5}}% +\section{\partial{Exercise 1.7.5}}% \label{sec:exercise-1.7.5} Prove that a triangle whose vertices are lattice points cannot be equilateral. @@ -1050,7 +1050,7 @@ ways, using Exercises 2 and 4.] \end{proof} -\section{\unverified{Exercise 1.7.6}}% +\section{\partial{Exercise 1.7.6}}% \label{sec:exercise-1.7.6} Let $A = \{1, 2, 3, 4, 5\}$, and let $\mathscr{M}$ denote the class of all @@ -1385,7 +1385,7 @@ State and prove such a generalization. \end{proof} -\section{\unverified{Exercise 1.11.6}}% +\section{\partial{Exercise 1.11.6}}% \label{sec:exercise-1.11.6} Recall that a lattice point $(x, y)$ in the plane is one whose coordinates are @@ -1438,7 +1438,7 @@ When $b = 1$, the sum on the left is understood to be $0$. \note{When $b = 1$, the proofs of (a) and (b) are trivial. We continue under the assumption $b > 1$.} -\subsection{\unverified{Exercise 1.11.7a}}% +\subsection{\partial{Exercise 1.11.7a}}% \label{sub:exercise-1.11.7a} Derive this result by a geometric argument, counting lattice points in a right diff --git a/Bookshelf/Enderton.tex b/Bookshelf/Enderton.tex index 4112570..0773151 100644 --- a/Bookshelf/Enderton.tex +++ b/Bookshelf/Enderton.tex @@ -27,10 +27,4 @@ Assume that $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$. Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$. -\begin{proof} - - TODO - -\end{proof} - \end{document}