Enderton. Exponentiation and some arithmetic exercises.

finite-set-exercises
Joshua Potter 2023-08-02 13:54:45 -06:00
parent 3faaacccf0
commit 03f51f3097
1 changed files with 23 additions and 7 deletions

View File

@ -34,9 +34,6 @@ For each $m \in \omega$, there exists (by the
\end{align*} \end{align*}
\textbf{Addition} ($+$) is the \nameref{ref:binary-operation} on $\omega$ such \textbf{Addition} ($+$) is the \nameref{ref:binary-operation} on $\omega$ such
that for any $m$ and $n$ in $\omega$, $$m + n = A_m(n).$$ that for any $m$ and $n$ in $\omega$, $$m + n = A_m(n).$$
Thus when written as a \nameref{ref:relation},
$$+ = \{\pair{\pair{m, n}, p} \mid
m \in \omega \land n \in \omega \land p = A_m(n)\}.$$
\begin{definition} \begin{definition}
@ -185,6 +182,25 @@ Relation $R$ is an \textbf{equivalence relation} on set $A$ if and only if
\end{definition} \end{definition}
\section{\defined{Exponentiation}}%
\hyperlabel{ref:exponentiation}
For each $m \in \omega$, there exists (by the
\nameref{sub:recursion-theorem-natural-numbers}) a unique
\nameref{ref:function} $E_m \colon \omega \rightarrow \omega$ for which
\begin{align*}
E_m(0) & = 1, \\
E_m(n^+) & = E_m(n) \cdot m & \text{for } n \text{ in } \omega.
\end{align*}
\textbf{Exponentiation} is the \nameref{ref:binary-operation} on $\omega$
such that for any $m$ and $n$ in $\omega$, $$m^n = E_m(n).$$
\begin{definition}
\lean*{Init/Prelude}{Pow.pow}
\end{definition}
\section{\defined{Extensionality Axiom}}% \section{\defined{Extensionality Axiom}}%
\hyperlabel{ref:extensionality-axiom} \hyperlabel{ref:extensionality-axiom}
@ -7512,25 +7528,25 @@ Show that each natural number is either even or odd, but never both.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 4.15}}% \subsection{\verified{Exercise 4.15}}%
\hyperlabel{sub:exercise-4.15} \hyperlabel{sub:exercise-4.15}
Complete the proof of \nameref{sub:theorem-4k-1}. Complete the proof of \nameref{sub:theorem-4k-1}.
\begin{proof} \begin{proof}
TODO Refer to \nameref{sub:theorem-4k-1}.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 4.16}}% \subsection{\verified{Exercise 4.16}}%
\hyperlabel{sub:exercise-4.16} \hyperlabel{sub:exercise-4.16}
Complete the proof of \nameref{sub:theorem-4k-5}. Complete the proof of \nameref{sub:theorem-4k-5}.
\begin{proof} \begin{proof}
TODO Refer to \nameref{sub:theorem-4k-5}.
\end{proof} \end{proof}