bookshelf/Bookshelf/Enderton/Chapter_0.tex

27 lines
501 B
TeX
Raw Normal View History

2023-04-09 18:08:30 +00:00
\documentclass{article}
2023-05-07 21:57:40 +00:00
\input{../../preamble}
2023-04-09 18:08:30 +00:00
\newcommand{\lean}[1]{\leanref
{./Chapter\_0.html\#Enderton.Chapter\_0.#1}
{Enderton.Chapter\_0.#1}}
2023-04-09 18:08:30 +00:00
\begin{document}
2023-04-09 18:08:30 +00:00
\header{Useful Facts About Sets}{Herbert B. Enderton}
2023-04-09 18:08:30 +00:00
\section*{\proceeding{Lemma 0A}}%
\label{sec:lemma-0a}
Assume that $\langle x_1, \ldots, x_m \rangle =
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
2023-04-09 18:08:30 +00:00
\begin{proof}
\lean{lemma\_0a}
2023-04-09 18:08:30 +00:00
\end{proof}
\end{document}