2023-05-13 12:59:28 +00:00
|
|
|
\documentclass{report}
|
|
|
|
|
2023-05-18 20:04:20 +00:00
|
|
|
\input{../../preamble}
|
|
|
|
\makeleancommands{../..}
|
2023-05-13 12:59:28 +00:00
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
2023-05-18 18:39:36 +00:00
|
|
|
\header{A Mathematical Introduction to Logic}{Herbert B. Enderton}
|
2023-05-13 12:59:28 +00:00
|
|
|
|
|
|
|
\tableofcontents
|
|
|
|
|
2023-05-18 18:39:36 +00:00
|
|
|
\begingroup
|
2023-05-18 19:03:59 +00:00
|
|
|
\renewcommand\thechapter{R}
|
2023-05-18 18:39:36 +00:00
|
|
|
|
2023-05-18 19:03:59 +00:00
|
|
|
\chapter{Reference}%
|
2023-07-12 16:54:35 +00:00
|
|
|
\hyperlabel{chap:reference}
|
2023-05-18 18:39:36 +00:00
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
|
|
|
% Reset counter to mirror Enderton's book.
|
2023-05-13 12:59:28 +00:00
|
|
|
\setcounter{chapter}{0}
|
|
|
|
\addtocounter{chapter}{-1}
|
|
|
|
\chapter{Useful Facts About Sets}%
|
2023-07-12 16:54:35 +00:00
|
|
|
\hyperlabel{chap:useful-facts-about-sets}
|
2023-05-13 12:59:28 +00:00
|
|
|
|
2023-06-30 17:50:34 +00:00
|
|
|
\section{\sorry{Lemma 0A}}%
|
2023-07-12 16:54:35 +00:00
|
|
|
\hyperlabel{sec:lemma-0a}
|
2023-05-13 12:59:28 +00:00
|
|
|
|
|
|
|
Assume that $\langle x_1, \ldots, x_m \rangle =
|
|
|
|
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
|
|
|
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
|
|
|
|
|
|
|
\end{document}
|