2023-04-09 18:08:30 +00:00
|
|
|
\documentclass{article}
|
|
|
|
|
2023-05-07 21:57:40 +00:00
|
|
|
\input{../../preamble}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
2023-05-11 02:19:18 +00:00
|
|
|
\newcommand{\lean}[1]{\leanref
|
2023-05-11 00:26:01 +00:00
|
|
|
{./Chapter\_0.html\#Enderton.Chapter\_0.#1}
|
|
|
|
{Enderton.Chapter\_0.#1}}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\begin{document}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
2023-05-10 16:45:42 +00:00
|
|
|
\header{Useful Facts About Sets}{Herbert B. Enderton}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
2023-05-13 00:29:02 +00:00
|
|
|
\section*{\unverified{Lemma 0A}}%
|
2023-05-11 02:27:46 +00:00
|
|
|
\label{sec:lemma-0a}
|
2023-05-10 16:45:42 +00:00
|
|
|
|
|
|
|
Assume that $\langle x_1, \ldots, x_m \rangle =
|
|
|
|
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
2023-05-03 23:26:45 +00:00
|
|
|
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
2023-04-09 18:08:30 +00:00
|
|
|
|
|
|
|
\begin{proof}
|
|
|
|
|
2023-05-11 00:26:01 +00:00
|
|
|
\lean{lemma\_0a}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\end{document}
|