2023-05-08 19:18:12 +00:00
|
|
|
|
import Mathlib.Data.Real.Basic
|
|
|
|
|
|
2023-05-08 19:43:54 +00:00
|
|
|
|
/-! # Apostol.Chapter_1_11 -/
|
2023-05-08 19:18:12 +00:00
|
|
|
|
|
2023-05-08 19:43:54 +00:00
|
|
|
|
namespace Apostol.Chapter_1_11
|
2023-05-08 19:18:12 +00:00
|
|
|
|
|
|
|
|
|
/-! ## Exercise 4
|
|
|
|
|
|
|
|
|
|
Prove that the greatest-integer function has the properties indicated.
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
/-- ### Exercise 4a
|
|
|
|
|
|
|
|
|
|
`⌊x + n⌋ = ⌊x⌋ + n` for every integer `n`.
|
|
|
|
|
-/
|
2023-05-08 22:44:52 +00:00
|
|
|
|
theorem exercise_4a (x : ℝ) (n : ℤ) : ⌊x + n⌋ = ⌊x⌋ + n :=
|
|
|
|
|
Int.floor_add_int x n
|
2023-05-08 19:18:12 +00:00
|
|
|
|
|
2023-05-08 22:44:52 +00:00
|
|
|
|
/-- ### Exercise 4b.1
|
2023-05-08 19:18:12 +00:00
|
|
|
|
|
|
|
|
|
`⌊-x⌋ = -⌊x⌋` if `x` is an integer.
|
2023-05-08 22:44:52 +00:00
|
|
|
|
-/
|
|
|
|
|
theorem exercise_4b_1 (x : ℤ) : ⌊-x⌋ = -⌊x⌋ := by
|
|
|
|
|
simp only [Int.floor_int, id_eq]
|
|
|
|
|
|
|
|
|
|
/-- ### Exercise 4b.2
|
|
|
|
|
|
2023-05-08 19:18:12 +00:00
|
|
|
|
`⌊-x⌋ = -⌊x⌋ - 1` otherwise.
|
|
|
|
|
-/
|
2023-05-08 22:44:52 +00:00
|
|
|
|
theorem exercise_4b_2 (x : ℝ) (h : ∃ n : ℤ, x ∈ Set.Ioo ↑n (↑n + (1 : ℝ)))
|
|
|
|
|
: ⌊-x⌋ = -⌊x⌋ - 1 := by
|
|
|
|
|
rw [Int.floor_neg]
|
|
|
|
|
suffices ⌈x⌉ = ⌊x⌋ + 1 by
|
|
|
|
|
have := congrArg (HMul.hMul (-1)) this
|
|
|
|
|
simp only [neg_mul, one_mul, neg_add_rev, add_comm] at this
|
|
|
|
|
exact this
|
|
|
|
|
have ⟨n, hn⟩ := h
|
|
|
|
|
have hn' : x ∈ Set.Ico ↑n (↑n + (1 : ℝ)) :=
|
|
|
|
|
Set.mem_of_subset_of_mem Set.Ioo_subset_Ico_self hn
|
|
|
|
|
rw [Int.ceil_eq_iff, Int.floor_eq_on_Ico n x hn']
|
|
|
|
|
simp only [Int.cast_add, Int.cast_one, add_sub_cancel]
|
|
|
|
|
apply And.intro
|
|
|
|
|
· exact (Set.mem_Ioo.mp hn).left
|
|
|
|
|
· exact le_of_lt (Set.mem_Ico.mp hn').right
|
2023-05-08 19:18:12 +00:00
|
|
|
|
|
|
|
|
|
/-- ### Exercise 4c
|
|
|
|
|
|
|
|
|
|
`⌊x + y⌋ = ⌊x⌋ + ⌊y⌋` or `⌊x⌋ + ⌊y⌋ + 1`.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_4c (x y : ℝ)
|
|
|
|
|
: ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ ∨ ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ + 1 := by
|
2023-05-09 02:30:59 +00:00
|
|
|
|
have hx : x = Int.floor x + Int.fract x := Eq.symm (add_eq_of_eq_sub' rfl)
|
|
|
|
|
have hy : y = Int.floor y + Int.fract y := Eq.symm (add_eq_of_eq_sub' rfl)
|
|
|
|
|
by_cases Int.fract x + Int.fract y < 1
|
|
|
|
|
· refine Or.inl ?_
|
|
|
|
|
rw [Int.floor_eq_iff]
|
|
|
|
|
simp only [Int.cast_add]
|
|
|
|
|
apply And.intro
|
|
|
|
|
· exact add_le_add (Int.floor_le x) (Int.floor_le y)
|
|
|
|
|
· conv => lhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
|
|
|
|
rwa [add_comm, ← add_assoc, ← sub_lt_iff_lt_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
|
|
|
|
· refine Or.inr ?_
|
|
|
|
|
rw [Int.floor_eq_iff]
|
|
|
|
|
simp only [Int.cast_add, Int.cast_one]
|
|
|
|
|
have h := le_of_not_lt h
|
|
|
|
|
apply And.intro
|
|
|
|
|
· conv => lhs; rw [← add_rotate]
|
|
|
|
|
conv => rhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
|
|
|
|
rwa [← sub_le_iff_le_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
|
|
|
|
· conv => lhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
|
|
|
|
conv => lhs; rw [add_comm, ← add_assoc]
|
|
|
|
|
conv => rhs; rw [add_assoc]
|
|
|
|
|
rw [← sub_lt_iff_lt_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
|
|
|
|
exact add_lt_add (Int.fract_lt_one x) (Int.fract_lt_one y)
|
2023-05-08 19:18:12 +00:00
|
|
|
|
|
|
|
|
|
/-- ### Exercise 4d
|
|
|
|
|
|
|
|
|
|
`⌊2x⌋ = ⌊x⌋ + ⌊x + 1/2⌋`
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_4d (x : ℝ)
|
|
|
|
|
: ⌊2 * x⌋ = ⌊x⌋ + ⌊x + 1/2⌋ := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- ### Exercise 4e
|
|
|
|
|
|
|
|
|
|
`⌊3x⌋ = ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋`
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_4e (x : ℝ)
|
|
|
|
|
: ⌊3 * x⌋ = ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋ := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- ### Exercise 5
|
|
|
|
|
|
|
|
|
|
The formulas in Exercises 4(d) and 4(e) suggest a generalization for `⌊nx⌋`.
|
|
|
|
|
State and prove such a generalization.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_5 (n : ℕ) (x : ℝ)
|
2023-05-09 02:30:59 +00:00
|
|
|
|
: True := by
|
2023-05-08 19:18:12 +00:00
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- ### Exercise 7b
|
|
|
|
|
|
|
|
|
|
If `a` and `b` are positive integers with no common factor, we have the formula
|
|
|
|
|
`Σ_{n=1}^{b-1} ⌊na / b⌋ = ((a - 1)(b - 1)) / 2`. When `b = 1`, the sum on the
|
|
|
|
|
left is understood to be `0`.
|
|
|
|
|
|
|
|
|
|
Derive the result analytically as follows: By changing the index of summation,
|
|
|
|
|
note that `Σ_{n=1}^{b-1} ⌊na / b⌋ = Σ_{n=1}^{b-1} ⌊a(b - n) / b⌋`. Now apply
|
|
|
|
|
Exercises 4(a) and (b) to the bracket on the right.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_7b : True := sorry
|
|
|
|
|
|
2023-05-08 19:43:54 +00:00
|
|
|
|
end Apostol.Chapter_1_11
|