bookshelf/Exercises/Enderton/Chapter0.tex

23 lines
419 B
TeX
Raw Normal View History

2023-04-09 18:08:30 +00:00
\documentclass{article}
\input{preamble}
2023-04-09 18:08:30 +00:00
\newcommand{\link}[1]{\lean{../..}{Exercises/Enderton/Chapter0}
{Exercises.Enderton.Chapter0.#1}}
2023-04-09 18:08:30 +00:00
\begin{document}
2023-04-09 18:08:30 +00:00
\section*{Lemma 0A}%
\label{sec:lemma-0a}
2023-04-09 18:08:30 +00:00
Assume that $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
2023-04-09 18:08:30 +00:00
\begin{proof}
\link{lemma_0a}
2023-04-09 18:08:30 +00:00
\end{proof}
\end{document}