24 lines
469 B
TeX
24 lines
469 B
TeX
|
\documentclass{article}
|
||
|
|
||
|
\input{preamble}
|
||
|
|
||
|
\newcommand{\link}[1]{\lean{../../..}{Bookshelf/Real/Sequence/Geometric}
|
||
|
{Real.Geometric.#1}}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\section*{Sum of Geometric Series}%
|
||
|
\label{sec:sum-geometric-series}
|
||
|
|
||
|
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
||
|
Then for some $n \in \mathbb{N}$,
|
||
|
$$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
\link{sum_recursive_closed}
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\end{document}
|