bookshelf/Common/Set/Equinumerous.lean

212 lines
5.3 KiB
Plaintext
Raw Normal View History

2023-11-12 18:44:57 +00:00
import Common.Nat.Basic
import Common.Set.Basic
import Mathlib.Data.Finset.Card
import Mathlib.Data.Set.Finite
/-! # Common.Set.Finite
Additional theorems around finite sets.
-/
namespace Set
/-! ## Definitions -/
/--
A set `A` is equinumerous to a set `B` (written `A ≈ B`) if and only if there is
a one-to-one function from `A` onto `B`.
-/
def Equinumerous (A : Set α) (B : Set β) : Prop := ∃ F, Set.BijOn F A B
infix:50 " ≈ " => Equinumerous
theorem equinumerous_def (A : Set α) (B : Set β)
: A ≈ B ↔ ∃ F, Set.BijOn F A B := Iff.rfl
/--
A set `A` is not equinumerous to a set `B` (written `A ≉ B`) if and only if
there is no one-to-one function from `A` onto `B`.
-/
def NotEquinumerous (A : Set α) (B : Set β) : Prop := ¬ Equinumerous A B
infix:50 " ≉ " => NotEquinumerous
@[simp]
theorem not_equinumerous_def : A ≉ B ↔ ∀ F, ¬ Set.BijOn F A B := by
apply Iff.intro
· intro h
unfold NotEquinumerous Equinumerous at h
simp only [not_exists] at h
exact h
· intro h
unfold NotEquinumerous Equinumerous
simp only [not_exists]
exact h
/--
For any set `A`, `A ≈ A`.
-/
theorem equinumerous_refl (A : Set α)
: A ≈ A := by
refine ⟨fun x => x, ?_⟩
unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn
simp only [imp_self, implies_true, Set.image_id', true_and]
exact Eq.subset rfl
/--
For any sets `A` and `B`, if `A ≈ B`. then `B ≈ A`.
-/
theorem equinumerous_symm [Nonempty α] {A : Set α} {B : Set β}
(h : A ≈ B) : B ≈ A := by
have ⟨F, hF⟩ := h
refine ⟨Function.invFunOn F A, ?_⟩
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hF).mpr hF
/--
For any sets `A`, `B`, and `C`, if `A ≈ B` and `B ≈ C`, then `A ≈ C`.
-/
theorem equinumerous_trans {A : Set α} {B : Set β} {C : Set γ}
(h₁ : A ≈ B) (h₂ : B ≈ C)
: ∃ H, Set.BijOn H A C := by
have ⟨F, hF⟩ := h₁
have ⟨G, hG⟩ := h₂
exact ⟨G ∘ F, Set.BijOn.comp hG hF⟩
/--
If two sets are equal, they are trivially equinumerous.
-/
theorem eq_imp_equinumerous {A B : Set α} (h : A = B)
: A ≈ B := by
have := equinumerous_refl A
conv at this => right; rw [h]
exact this
/-! ## Finite Sets -/
/--
A set is finite if and only if it is equinumerous to a natural number.
-/
axiom finite_iff_equinumerous_nat {α : Type _} {S : Set α}
: Set.Finite S ↔ ∃ n : , S ≈ Set.Iio n
/-! ## Emptyset -/
/--
Any set equinumerous to the emptyset is the emptyset.
-/
@[simp]
theorem equinumerous_zero_iff_emptyset {S : Set α}
: S ≈ Set.Iio 0 ↔ S = ∅ := by
apply Iff.intro
· intro ⟨f, hf⟩
by_contra nh
rw [← Ne.def, ← Set.nonempty_iff_ne_empty] at nh
have ⟨x, hx⟩ := nh
have := hf.left hx
simp at this
· intro h
rw [h]
refine ⟨fun _ => ⊥, ?_, ?_, ?_⟩
· intro _ hx
simp at hx
· intro _ hx
simp at hx
· unfold SurjOn
simp only [bot_eq_zero', image_empty]
show ∀ x, x ∈ Set.Iio 0 → x ∈ ∅
intro _ hx
simp at hx
/--
Empty sets are always equinumerous, regardless of their underlying type.
-/
theorem equinumerous_emptyset_emptyset [Bot β]
: (∅ : Set α) ≈ (∅ : Set β) := by
refine ⟨fun _ => ⊥, ?_, ?_, ?_⟩
· intro _ hx
simp at hx
· intro _ hx
simp at hx
· unfold SurjOn
simp
2023-11-12 18:44:57 +00:00
/--
For all natural numbers `m, n`, `m⁺ - n⁺ ≈ m - n`.
-/
theorem succ_diff_succ_equinumerous_diff {m n : }
: Set.Iio m.succ \ Set.Iio n.succ ≈ Set.Iio m \ Set.Iio n := by
refine Set.equinumerous_symm ⟨fun x => x + 1, ?_, ?_, ?_⟩
· intro x ⟨hx₁, hx₂⟩
simp at hx₁ hx₂ ⊢
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
· intro _ _ _ _ h
simp only [add_left_inj] at h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
intro x ⟨hx₁, hx₂⟩
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_setOf_eq,
Set.mem_Iio
] at hx₁ hx₂ ⊢
have ⟨p, hp⟩ : ∃ p : , x = p.succ := by
refine Nat.exists_eq_succ_of_ne_zero ?_
have := calc 0
_ < n.succ := by simp
_ ≤ x := hx₂
exact Nat.pos_iff_ne_zero.mp this
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
· rw [hp] at hx₂
exact Nat.lt_succ.mp hx₂
· rw [hp] at hx₁
exact Nat.succ_lt_succ_iff.mp hx₁
/--
For all natural numbers `m, n`, `m - n {m} ≈ m - n`.
-/
theorem diff_union_equinumerous_succ_diff {m n : } (hn: n ≤ m)
: Set.Iio m \ Set.Iio n {m} ≈ Set.Iio (Nat.succ m) \ Set.Iio n := by
refine ⟨fun x => x, ?_, ?_, ?_⟩
· intro x hx
simp at hx ⊢
apply Or.elim hx
· intro hx₁
rw [hx₁]
exact ⟨hn, by simp⟩
· intro ⟨hx₁, hx₂⟩
exact ⟨hx₁, calc x
_ < m := hx₂
_ < m + 1 := by simp⟩
· intro _ _ _ _ h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_Ico,
Set.union_singleton,
lt_self_iff_false,
and_false,
Set.mem_insert_iff,
exists_eq_right,
Set.mem_setOf_eq,
and_imp
]
intro x hn hm
apply Or.elim (Nat.lt_or_eq_of_lt hm)
· intro hx
right
exact ⟨hn, hx⟩
· intro hx
left
exact hx
end Set