bookshelf/theorem-proving-in-lean/TheoremProvingInLean/Exercises4.lean

242 lines
7.0 KiB
Plaintext
Raw Normal View History

/-
# References
1. Avigad, Jeremy. Theorem Proving in Lean, n.d.
-/
-- Exercise 1
--
-- Prove these equivalences. You should also try to understand why the reverse
-- implication is not derivable in the last example.
2023-02-10 21:51:20 +00:00
namespace ex1
2023-02-10 21:51:20 +00:00
variable (α : Type _)
variable (p q : α → Prop)
example : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) :=
2023-02-10 21:51:20 +00:00
Iff.intro
(fun h => ⟨fun x => And.left (h x), fun x => And.right (h x)⟩)
(fun ⟨h₁, h₂⟩ x => ⟨h₁ x, h₂ x⟩)
example : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) :=
2023-02-10 21:51:20 +00:00
fun h₁ h₂ x =>
have px : p x := h₂ x
h₁ x px
example : (∀ x, p x) (∀ x, q x) → ∀ x, p x q x :=
2023-02-10 21:51:20 +00:00
fun h₁ x => h₁.elim
(fun h₂ => Or.inl (h₂ x))
(fun h₂ => Or.inr (h₂ x))
-- The implication in the above example cannot be proven in the other direction
-- because it may be the case predicate `p x` holds for certain values of `x`
-- but not others that `q x` may hold for (and vice versa).
2023-02-10 21:51:20 +00:00
end ex1
-- Exercise 2
--
-- It is often possible to bring a component of a formula outside a universal
-- quantifier, when it does not depend on the quantified variable. Try proving
-- these (one direction of the second of these requires classical logic).
2023-02-10 21:51:20 +00:00
namespace ex2
2023-02-10 21:51:20 +00:00
variable (α : Type _)
variable (p q : α → Prop)
variable (r : Prop)
2023-02-10 21:51:20 +00:00
example : α → ((∀ _ : α, r) ↔ r) :=
fun a => Iff.intro (fun h => h a) (fun hr _ => hr)
section
2023-02-07 14:24:48 +00:00
2023-02-10 21:51:20 +00:00
open Classical
2023-02-07 14:24:48 +00:00
example : (∀ x, p x r) ↔ (∀ x, p x) r :=
2023-02-10 21:51:20 +00:00
Iff.intro
(fun h₁ => (em r).elim
Or.inr
(fun nr => Or.inl (fun x => (h₁ x).elim id (absurd · nr))))
(fun h₁ => h₁.elim
(fun h₂ x => Or.inl (h₂ x))
(fun hr _ => Or.inr hr))
end
example : (∀ x, r → p x) ↔ (r → ∀ x, p x) :=
2023-02-10 21:51:20 +00:00
Iff.intro
(fun h hr hx => h hx hr)
(fun h hx hr => h hr hx)
2023-02-10 21:51:20 +00:00
end ex2
-- Exercise 3
--
-- Consider the "barber paradox," that is, the claim that in a certain town
-- there is a (male) barber that shaves all and only the men who do not shave
-- themselves. Prove that this is a contradiction.
2023-02-10 21:51:20 +00:00
namespace ex3
2023-02-10 21:51:20 +00:00
open Classical
2023-02-10 21:51:20 +00:00
variable (men : Type _)
variable (barber : men)
variable (shaves : men → men → Prop)
2023-02-10 21:51:20 +00:00
example (h : ∀ x : men, shaves barber x ↔ ¬shaves x x) : False :=
have b : shaves barber barber ↔ ¬shaves barber barber := h barber
(em (shaves barber barber)).elim
(fun b' => absurd b' (Iff.mp b b'))
(fun b' => absurd (Iff.mpr b b') b')
2023-02-10 21:51:20 +00:00
end ex3
-- Exercise 4
--
-- Remember that, without any parameters, an expression of type `Prop` is just
-- an assertion. Fill in the definitions of `prime` and `Fermat_prime` below,
-- and construct each of the given assertions. For example, you can say that
-- there are infinitely many primes by asserting that for every natural number
-- `n`, there is a prime number greater than `n.` Goldbachs weak conjecture
-- states that every odd number greater than `5` is the sum of three primes.
-- Look up the definition of a Fermat prime or any of the other statements, if
-- necessary.
2023-02-10 21:51:20 +00:00
namespace ex4
def even (a : Nat) := ∃ b, a = 2 * b
2023-02-10 21:51:20 +00:00
def odd (a : Nat) := ¬even a
2023-02-10 21:51:20 +00:00
def prime (n : Nat) : Prop :=
n > 1 ∧ ∀ (m : Nat), (1 < m ∧ m < n) → n % m ≠ 0
2023-02-10 21:51:20 +00:00
def infinitelyManyPrimes : Prop :=
∀ (n : Nat), (∃ (m : Nat), m > n ∧ prime m)
2023-02-10 21:51:20 +00:00
def FermatPrime (n : Nat) : Prop :=
∃ (m : Nat), n = 2^(2^m) + 1
2023-02-10 21:51:20 +00:00
def infinitelyManyFermatPrimes : Prop :=
∀ (n : Nat), (∃ (m : Nat), m > n ∧ FermatPrime m)
2023-02-10 21:51:20 +00:00
def GoldbachConjecture : Prop :=
∀ (n : Nat), even n ∧ n > 2 →
∃ (x y : Nat), prime x ∧ prime y ∧ x + y = n
2023-02-10 21:51:20 +00:00
def Goldbach'sWeakConjecture : Prop :=
∀ (n : Nat), odd n ∧ n > 5 →
∃ (x y z : Nat), prime x ∧ prime y ∧ prime z ∧ x + y + z = n
2023-02-10 21:51:20 +00:00
def Fermat'sLastTheorem : Prop :=
∀ (n : Nat), n > 2 → (∀ (a b c : Nat), a^n + b^n ≠ c^n)
end ex4
-- Exercise 5
--
-- Prove as many of the identities listed in Section 4.4 as you can.
2023-02-10 21:51:20 +00:00
namespace ex5
2023-02-10 21:51:20 +00:00
open Classical
2023-02-10 21:51:20 +00:00
variable (α : Type _)
variable (p q : α → Prop)
variable (r s : Prop)
2023-02-10 21:51:20 +00:00
example : (∃ _ : α, r) → r :=
fun ⟨_, hr⟩ => hr
2023-02-10 21:51:20 +00:00
example (a : α) : r → (∃ _ : α, r) :=
fun hr => ⟨a, hr⟩
example : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r :=
2023-02-10 21:51:20 +00:00
Iff.intro
(fun ⟨hx, ⟨hp, hr⟩⟩ => ⟨⟨hx, hp⟩, hr⟩)
(fun ⟨⟨hx, hp⟩, hr⟩ => ⟨hx, ⟨hp, hr⟩⟩)
2023-02-07 14:24:48 +00:00
example : (∃ x, p x q x) ↔ (∃ x, p x) (∃ x, q x) :=
2023-02-10 21:51:20 +00:00
Iff.intro
(fun ⟨hx, hpq⟩ => hpq.elim
(fun hp => Or.inl ⟨hx, hp⟩)
(fun hq => Or.inr ⟨hx, hq⟩))
(fun h => h.elim
(fun ⟨hx, hp⟩ => ⟨hx, Or.inl hp⟩)
(fun ⟨hx, hq⟩ => ⟨hx, Or.inr hq⟩))
example : (∀ x, p x) ↔ ¬(∃ x, ¬p x) :=
Iff.intro
(fun h ⟨hx, np⟩ => np (h hx))
(fun h hx => byContradiction
fun np => h ⟨hx, np⟩)
example : (∃ x, p x) ↔ ¬(∀ x, ¬p x) :=
Iff.intro
(fun ⟨hx, hp⟩ h => absurd hp (h hx))
(fun h => byContradiction
fun h' => h (fun (x : α) hp => h' ⟨x, hp⟩))
example : (¬∃ x, p x) ↔ (∀ x, ¬p x) :=
Iff.intro
(fun h hx hp => h ⟨hx, hp⟩)
(fun h ⟨hx, hp⟩ => absurd hp (h hx))
theorem forall_negation : (¬∀ x, p x) ↔ (∃ x, ¬p x) :=
Iff.intro
(fun h => byContradiction
fun h' => h (fun (x : α) => byContradiction
fun np => h' ⟨x, np⟩))
(fun ⟨hx, np⟩ h => absurd (h hx) np)
example : (¬∀ x, p x) ↔ (∃ x, ¬p x) :=
2023-02-07 14:24:48 +00:00
forall_negation α p
example : (∀ x, p x → r) ↔ (∃ x, p x) → r :=
2023-02-10 21:51:20 +00:00
Iff.intro
(fun h ⟨hx, hp⟩ => h hx hp)
(fun h hx hp => h ⟨hx, hp⟩)
2023-02-07 14:24:48 +00:00
example (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r :=
2023-02-10 21:51:20 +00:00
Iff.intro
(fun ⟨hx, hp⟩ h => hp (h hx))
(fun h₁ => (em (∀ x, p x)).elim
(fun h₂ => ⟨a, fun _ => h₁ h₂⟩)
(fun h₂ =>
have h₃ : (∃ x, ¬p x) := Iff.mp (forall_negation α p) h₂
2023-02-07 14:24:48 +00:00
match h₃ with
2023-02-10 21:51:20 +00:00
| ⟨hx, hp⟩ => ⟨hx, fun hp' => absurd hp' hp⟩))
2023-02-07 14:24:48 +00:00
example (a : α) : (∃ x, r → p x) ↔ (r → ∃ x, p x) :=
2023-02-10 21:51:20 +00:00
Iff.intro
(fun ⟨hx, hrp⟩ hr => ⟨hx, hrp hr⟩)
(fun h => (em r).elim
(fun hr => match h hr with
| ⟨hx, hp⟩ => ⟨hx, fun _ => hp⟩)
(fun nr => ⟨a, fun hr => absurd hr nr⟩))
2023-02-10 21:51:20 +00:00
end ex5
-- Exercise 6
--
-- Give a calculational proof of the theorem `log_mul` below.
2023-02-10 21:51:20 +00:00
namespace ex6
2023-02-10 21:51:20 +00:00
variable (log exp : Float → Float)
variable (log_exp_eq : ∀ x, log (exp x) = x)
variable (exp_log_eq : ∀ {x}, x > 0 → exp (log x) = x)
variable (exp_pos : ∀ x, exp x > 0)
variable (exp_add : ∀ x y, exp (x + y) = exp x * exp y)
2023-02-10 21:51:20 +00:00
example (x y z : Float) : exp (x + y + z) = exp x * exp y * exp z :=
by rw [exp_add, exp_add]
2023-02-10 21:51:20 +00:00
example (y : Float) (h : y > 0) : exp (log y) = y := exp_log_eq h
2023-02-10 21:51:20 +00:00
theorem log_mul {x y : Float} (hx : x > 0) (hy : y > 0) :
log (x * y) = log x + log y :=
2023-02-10 21:51:20 +00:00
calc log (x * y) = log (x * exp (log y)) := by rw [exp_log_eq hy]
_ = log (exp (log x) * exp (log y)) := by rw [exp_log_eq hx]
_ = log (exp (log x + log y)) := by rw [exp_add]
_ = log x + log y := by rw [log_exp_eq]
2023-02-07 14:24:48 +00:00
2023-02-10 21:51:20 +00:00
end ex6