101 lines
2.7 KiB
Plaintext
101 lines
2.7 KiB
Plaintext
|
/-
|
|||
|
# References
|
|||
|
|
|||
|
1. Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
|||
|
-/
|
|||
|
|
|||
|
-- Exercise 1
|
|||
|
--
|
|||
|
-- Define the function `Do_Twice`, as described in Section 2.4.
|
|||
|
namespace ex1
|
|||
|
|
|||
|
def double (x : Nat) := x + x
|
|||
|
def doTwice (f : Nat → Nat) (x : Nat) : Nat := f (f x)
|
|||
|
def doTwiceTwice (f : (Nat → Nat) → (Nat → Nat)) (x : Nat → Nat) := f (f x)
|
|||
|
|
|||
|
#reduce doTwiceTwice doTwice double 2
|
|||
|
|
|||
|
end ex1
|
|||
|
|
|||
|
-- Exercise 2
|
|||
|
--
|
|||
|
-- Define the functions `curry` and `uncurry`, as described in Section 2.4.
|
|||
|
namespace ex2
|
|||
|
|
|||
|
def curry (f : α × β → γ) : (α → β → γ) :=
|
|||
|
fun α β => f (α, β)
|
|||
|
|
|||
|
def uncurry (f : α → β → γ) : (α × β → γ) :=
|
|||
|
fun x => f x.1 x.2
|
|||
|
|
|||
|
end ex2
|
|||
|
|
|||
|
-- Exercise 3
|
|||
|
--
|
|||
|
-- Above, we used the example `vec α n` for vectors of elements of type `α` of
|
|||
|
-- length `n`. Declare a constant `vec_add` that could represent a function that
|
|||
|
-- adds two vectors of natural numbers of the same length, and a constant
|
|||
|
-- `vec_reverse` that can represent a function that reverses its argument. Use
|
|||
|
-- implicit arguments for parameters that can be inferred. Declare some
|
|||
|
-- variables and check some expressions involving the constants that you have
|
|||
|
-- declared.
|
|||
|
namespace ex3
|
|||
|
|
|||
|
universe u
|
|||
|
axiom vec : Type u → Nat → Type u
|
|||
|
|
|||
|
namespace vec
|
|||
|
|
|||
|
axiom empty : ∀ (α : Type u), vec α 0
|
|||
|
axiom cons : ∀ (α : Type u) (n : Nat), α → vec α n → vec α (n + 1)
|
|||
|
axiom append : ∀ (α : Type u) (n m : Nat), vec α m → vec α n → vec α (n + m)
|
|||
|
axiom add : ∀ {α : Type u} {n : Nat}, vec α n → vec α n → vec α n
|
|||
|
axiom reverse : ∀ {α : Type u} {n : Nat}, vec α n → vec α n
|
|||
|
|
|||
|
end vec
|
|||
|
|
|||
|
-- Check results.
|
|||
|
variable (a b : vec Prop 1)
|
|||
|
variable (c d : vec Prop 2)
|
|||
|
|
|||
|
#check vec.add a b
|
|||
|
-- #check vec.add a c
|
|||
|
#check vec.reverse a
|
|||
|
|
|||
|
end ex3
|
|||
|
|
|||
|
-- Exercise 4
|
|||
|
--
|
|||
|
-- Similarly, declare a constant `matrix` so that `matrix α m n` could represent
|
|||
|
-- the type of `m` by `n` matrices. Declare some constants to represent
|
|||
|
-- functions on this type, such as matrix addition and multiplication, and
|
|||
|
-- (using vec) multiplication of a matrix by a vector. Once again, declare some
|
|||
|
-- variables and check some expressions involving the constants that you have
|
|||
|
-- declared.
|
|||
|
namespace ex4
|
|||
|
|
|||
|
universe u
|
|||
|
axiom matrix : Type u → Nat → Nat → Type u
|
|||
|
|
|||
|
namespace matrix
|
|||
|
|
|||
|
axiom add : ∀ {α : Type u} {m n : Nat},
|
|||
|
matrix α m n → matrix α m n → matrix α m n
|
|||
|
axiom mul : ∀ {α : Type u} {m n p : Nat},
|
|||
|
matrix α m n → matrix α n p → matrix α m p
|
|||
|
axiom app : ∀ {α : Type u} {m n : Nat},
|
|||
|
matrix α m n → ex3.vec α n → ex3.vec α m
|
|||
|
|
|||
|
end matrix
|
|||
|
|
|||
|
variable (a b : matrix Prop 5 7)
|
|||
|
variable (c : matrix Prop 7 3)
|
|||
|
variable (d : ex3.vec Prop 3)
|
|||
|
|
|||
|
#check matrix.add a b
|
|||
|
-- #check matrix.add a c
|
|||
|
#check matrix.mul a c
|
|||
|
#check matrix.app c d
|
|||
|
|
|||
|
end ex4
|