bookshelf/Common/Geometry/Rectangle/Skew.lean

176 lines
3.9 KiB
Plaintext
Raw Normal View History

import Common.Geometry.Point
import Common.Geometry.Segment
import Common.Real.Trigonometry
/-! # Common.Geometry.Rectangle.Skew
A characterization of a skew rectangle.
-/
namespace Geometry.Rectangle
/--
A `Skew` rectangle is characterized by three points and the angle formed between
them.
A `Point` can alternatively be viewed as a `Skew` rectangle in which all three
points coincide. A `Segment` can alternatively be viewed as a `Skew` rectangle
in which two of the three points coincide. Note that, by definition of
`Point.angle`, such a situation does indeed yield an angle of `π / 2`.
-/
structure Skew where
tl : Point -- top left
bl : Point -- bottom left
br : Point -- bottom right
has_right_angle : Point.angle tl bl br = Real.pi / 2
namespace Skew
/--
The top-right corner of the `Skew` rectangle.
-/
def tr (r : Skew) : Point :=
⟨r.tl.x + r.br.x - r.bl.x, r.tl.y + r.br.y - r.bl.y⟩
/--
A `Skew` rectangle's top side is equal in length to its bottom side.
-/
theorem dist_top_eq_dist_bottom (r : Skew)
: Point.dist r.tl r.tr = Point.dist r.bl r.br := by
unfold tr Point.dist
simp only
repeat rw [add_comm, sub_right_comm, add_sub_cancel']
/--
A `Skew` rectangle's left side is equal in length to its right side.
-/
theorem dist_left_eq_dist_right (r : Skew)
: Point.dist r.tl r.bl = Point.dist r.tr r.br := by
unfold tr Point.dist
simp only
repeat rw [
sub_sub_eq_add_sub,
add_comm,
sub_add_eq_sub_sub,
sub_right_comm,
add_sub_cancel'
]
/--
Computes the width of a `Skew` rectangle.
-/
noncomputable def width (r : Skew) : :=
Point.dist r.bl r.br
/--
Computes the height of a `Skew` rectangle.
-/
noncomputable def height (r : Skew) : :=
Point.dist r.bl r.tl
/--
A mapping from a `Skew` rectangle to the set describing the region enclosed by
the rectangle.
-/
def toSet (r : Skew) : Set Point := sorry
/-! ## Point -/
/--
A `Point` is a `Skew` rectangle in which all points coincide.
-/
abbrev AsPoint := Subtype (fun r : Skew => r.tl = r.bl ∧ r.bl = r.br)
namespace AsPoint
/--
The function mapping a `Skew` rectangle with all points coinciding to a `Point`.
-/
def toPoint (p : AsPoint) : Point := p.val.tl
/--
The function mapping a `Point` to a `Skew` rectangle with all points coinciding.
-/
def fromPoint (p : Point) : AsPoint :=
have hp : Point.angle p p p = Real.pi / 2 := by
unfold Point.angle Real.euclideanAngle
simp
⟨Skew.mk p p p hp, by simp⟩
/--
An isomorphism between a `Skew` rectangle with all points coinciding and a
`Point`.
-/
def isoPoint : AsPoint ≃ Point :=
{
toFun := toPoint,
invFun := fromPoint,
left_inv := by
unfold Function.LeftInverse fromPoint toPoint
simp only
intro p
congr
· exact p.property.left
· rw [p.property.left]
exact p.property.right
right_inv := by
unfold Function.RightInverse Function.LeftInverse fromPoint toPoint
simp only
intro _
triv
}
/--
The width of an `AsPoint` is `0`.
-/
theorem width_eq_zero (p : AsPoint) : p.val.width = 0 := by
unfold Skew.width
rw [p.property.right]
unfold Point.dist
simp
/--
The height of an `AsPoint` is `0`.
-/
theorem height_eq_zero (p : AsPoint) : p.val.height = 0 := by
unfold Skew.height
rw [p.property.left]
unfold Point.dist
simp
end AsPoint
/-! ## Segment -/
/--
A `Segment` is a `Skew` rectangle in which two of three points coincide.
-/
abbrev AsSegment := Subtype (fun r : Skew =>
(r.tl = r.bl ∧ r.bl ≠ r.br) (r.tl ≠ r.bl ∧ r.bl = r.br))
namespace AsSegment
/--
Either the width or height of an `AsSegment` is zero.
-/
theorem width_or_height_eq_zero (s : AsSegment)
: s.val.width = 0 s.val.height = 0 := by
apply Or.elim s.property
· intro h
refine Or.inr ?_
unfold height
rw [h.left]
unfold Point.dist
simp
· intro h
refine Or.inl ?_
unfold width
rw [h.right]
unfold Point.dist
simp
end AsSegment
end Skew
end Geometry.Rectangle