bookshelf/theorem-proving-in-lean/Avigad/Chapter2.lean

111 lines
3.0 KiB
Plaintext
Raw Normal View History

/-
2023-04-02 14:57:58 +00:00
Chapter 2
2023-04-02 14:57:58 +00:00
Dependent Type Theory
-/
2023-04-08 16:32:20 +00:00
-- ========================================
-- Exercise 1
--
-- Define the function `Do_Twice`, as described in Section 2.4.
2023-04-08 16:32:20 +00:00
-- ========================================
2023-02-10 21:51:20 +00:00
namespace ex1
def double (x : Nat) := x + x
def doTwice (f : Nat → Nat) (x : Nat) : Nat := f (f x)
def doTwiceTwice (f : (Nat → Nat) → (Nat → Nat)) (x : Nat → Nat) := f (f x)
#reduce doTwiceTwice doTwice double 2
end ex1
2023-04-08 16:32:20 +00:00
-- ========================================
-- Exercise 2
--
-- Define the functions `curry` and `uncurry`, as described in Section 2.4.
2023-04-08 16:32:20 +00:00
-- ========================================
2023-02-10 21:51:20 +00:00
namespace ex2
2023-02-10 21:51:20 +00:00
def curry (f : α × β → γ) : (α → β → γ) :=
fun α β => f (α, β)
2023-02-10 21:51:20 +00:00
def uncurry (f : α → β → γ) : (α × β → γ) :=
fun x => f x.1 x.2
2023-02-10 21:51:20 +00:00
end ex2
2023-04-08 16:32:20 +00:00
-- ========================================
-- Exercise 3
--
-- Above, we used the example `vec α n` for vectors of elements of type `α` of
-- length `n`. Declare a constant `vec_add` that could represent a function that
-- adds two vectors of natural numbers of the same length, and a constant
-- `vec_reverse` that can represent a function that reverses its argument. Use
-- implicit arguments for parameters that can be inferred. Declare some
-- variables and check some expressions involving the constants that you have
-- declared.
2023-04-08 16:32:20 +00:00
-- ========================================
2023-02-10 21:51:20 +00:00
namespace ex3
universe u
axiom vec : Type u → Nat → Type u
namespace vec
2023-02-10 21:51:20 +00:00
axiom empty : ∀ (α : Type u), vec α 0
axiom cons : ∀ (α : Type u) (n : Nat), α → vec α n → vec α (n + 1)
axiom append : ∀ (α : Type u) (n m : Nat), vec α m → vec α n → vec α (n + m)
axiom add : ∀ {α : Type u} {n : Nat}, vec α n → vec α n → vec α n
axiom reverse : ∀ {α : Type u} {n : Nat}, vec α n → vec α n
end vec
-- Check results.
2023-02-10 21:51:20 +00:00
variable (a b : vec Prop 1)
variable (c d : vec Prop 2)
#check vec.add a b
-- #check vec.add a c
#check vec.reverse a
2023-02-10 21:51:20 +00:00
end ex3
2023-04-08 16:32:20 +00:00
-- ========================================
-- Exercise 4
--
-- Similarly, declare a constant `matrix` so that `matrix α m n` could represent
-- the type of `m` by `n` matrices. Declare some constants to represent
-- functions on this type, such as matrix addition and multiplication, and
-- (using vec) multiplication of a matrix by a vector. Once again, declare some
-- variables and check some expressions involving the constants that you have
-- declared.
2023-04-08 16:32:20 +00:00
-- ========================================
2023-02-10 21:51:20 +00:00
namespace ex4
2023-02-10 21:51:20 +00:00
universe u
axiom matrix : Type u → Nat → Nat → Type u
namespace matrix
2023-02-10 21:51:20 +00:00
axiom add : ∀ {α : Type u} {m n : Nat},
matrix α m n → matrix α m n → matrix α m n
axiom mul : ∀ {α : Type u} {m n p : Nat},
matrix α m n → matrix α n p → matrix α m p
axiom app : ∀ {α : Type u} {m n : Nat},
matrix α m n → ex3.vec α n → ex3.vec α m
end matrix
2023-02-10 21:51:20 +00:00
variable (a b : matrix Prop 5 7)
variable (c : matrix Prop 7 3)
variable (d : ex3.vec Prop 3)
#check matrix.add a b
-- #check matrix.add a c
#check matrix.mul a c
#check matrix.app c d
2023-02-10 21:51:20 +00:00
end ex4