2023-04-09 18:08:30 +00:00
|
|
|
\documentclass{article}
|
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\input{preamble}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
2023-05-03 19:09:58 +00:00
|
|
|
\newcommand{\link}[1]{\lean{../..}
|
|
|
|
{Exercises/Enderton/Chapter0}
|
|
|
|
{Exercises.Enderton.Chapter0.#1}
|
|
|
|
{Chapter0.#1}
|
|
|
|
}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\begin{document}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\section*{Lemma 0A}%
|
|
|
|
\label{sec:lemma-0a}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
Assume that $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
|
|
|
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
2023-04-09 18:08:30 +00:00
|
|
|
|
|
|
|
\begin{proof}
|
|
|
|
|
2023-05-03 19:09:58 +00:00
|
|
|
\link{lemma\_0a}
|
2023-04-09 18:08:30 +00:00
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\end{document}
|