34 lines
665 B
TeX
34 lines
665 B
TeX
|
\documentclass{report}
|
||
|
|
||
|
\input{../../preamble}
|
||
|
\makeleancommands{../..}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\header{A Mathematical Introduction to Logic}{Herbert B. Enderton}
|
||
|
|
||
|
\tableofcontents
|
||
|
|
||
|
\begingroup
|
||
|
\renewcommand\thechapter{R}
|
||
|
|
||
|
\chapter{Reference}%
|
||
|
\label{chap:reference}
|
||
|
|
||
|
\endgroup
|
||
|
|
||
|
% Reset counter to mirror Enderton's book.
|
||
|
\setcounter{chapter}{0}
|
||
|
\addtocounter{chapter}{-1}
|
||
|
\chapter{Useful Facts About Sets}%
|
||
|
\label{chap:useful-facts-about-sets}
|
||
|
|
||
|
\section{\unverified{Lemma 0A}}%
|
||
|
\label{sec:lemma-0a}
|
||
|
|
||
|
Assume that $\langle x_1, \ldots, x_m \rangle =
|
||
|
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
||
|
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
||
|
|
||
|
\end{document}
|