bookshelf/Bookshelf/Enderton/Chapter0.tex

29 lines
549 B
TeX
Raw Normal View History

2023-04-09 18:08:30 +00:00
\documentclass{article}
2023-05-07 21:57:40 +00:00
\input{../../preamble}
2023-04-09 18:08:30 +00:00
\newcommand{\link}[1]{\lean{../..}
{Bookshelf/Enderton/Chapter0} % Location
{Enderton.Chapter0.#1} % Namespace
{Chapter0.#1} % Presentation
}
2023-04-09 18:08:30 +00:00
\begin{document}
2023-04-09 18:08:30 +00:00
\header{Useful Facts About Sets}{Herbert B. Enderton}
2023-04-09 18:08:30 +00:00
\section{\proceeding{Lemma 0A}}%
\hyperlabel{sec:lemma-0a}%
Assume that $\langle x_1, \ldots, x_m \rangle =
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
2023-04-09 18:08:30 +00:00
\begin{proof}
\link{lemma\_0a}
2023-04-09 18:08:30 +00:00
\end{proof}
\end{document}