2023-05-13 12:59:28 +00:00
|
|
|
\documentclass{report}
|
|
|
|
|
|
|
|
\input{../preamble}
|
2023-05-17 18:28:02 +00:00
|
|
|
\makeleancommands
|
2023-05-13 12:59:28 +00:00
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
2023-05-18 18:39:36 +00:00
|
|
|
\header{A Mathematical Introduction to Logic}{Herbert B. Enderton}
|
2023-05-13 12:59:28 +00:00
|
|
|
|
|
|
|
\tableofcontents
|
|
|
|
|
2023-05-18 18:39:36 +00:00
|
|
|
\begingroup
|
|
|
|
\renewcommand\thechapter{G}
|
|
|
|
|
|
|
|
\chapter{Glossary}%
|
|
|
|
\label{chap:glossary}
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
|
|
|
% Reset counter to mirror Enderton's book.
|
2023-05-13 12:59:28 +00:00
|
|
|
\setcounter{chapter}{0}
|
|
|
|
\addtocounter{chapter}{-1}
|
|
|
|
\chapter{Useful Facts About Sets}%
|
|
|
|
\label{chap:useful-facts-about-sets}
|
|
|
|
|
|
|
|
\section{\unverified{Lemma 0A}}%
|
|
|
|
\label{sec:lemma-0a}
|
|
|
|
|
|
|
|
Assume that $\langle x_1, \ldots, x_m \rangle =
|
|
|
|
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
|
|
|
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
|
|
|
|
|
|
|
\end{document}
|