bookshelf/shared/Bookshelf/Real/Sequence.tex

36 lines
779 B
TeX
Raw Normal View History

\documentclass{article}
2023-04-21 20:17:47 +00:00
\input{../../preamble}
\begin{document}
\begin{theorem}[Sum of Arithmetic Series]
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
Then for some $n \in \mathbb{N}$,
$$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
\end{theorem}
\begin{proof}
2023-04-21 20:17:47 +00:00
\href{Sequence/Arithmetic.lean}{Bookshelf.Real.Sequence.Arithmetic.sum_recursive_closed}
\end{proof}
\begin{theorem}[Sum of Geometric Series]
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
Then for some $n \in \mathbb{N}$,
$$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
\end{theorem}
\begin{proof}
2023-04-21 20:17:47 +00:00
\href{Sequence/Geometric.lean}{Bookshelf.Real.Sequence.Geometric.sum_recursive_closed}
\end{proof}
\end{document}