2023-04-11 12:46:59 +00:00
|
|
|
\documentclass{article}
|
|
|
|
|
2023-04-21 20:17:47 +00:00
|
|
|
\input{../../preamble}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\begin{theorem}[Sum of Arithmetic Series]
|
|
|
|
|
|
|
|
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
|
|
|
Then for some $n \in \mathbb{N}$,
|
|
|
|
$$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
|
|
|
|
|
|
|
|
\end{theorem}
|
|
|
|
|
|
|
|
\begin{proof}
|
|
|
|
|
2023-04-21 20:17:47 +00:00
|
|
|
\href{Sequence/Arithmetic.lean}{Bookshelf.Real.Sequence.Arithmetic.sum_recursive_closed}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{theorem}[Sum of Geometric Series]
|
|
|
|
|
|
|
|
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
|
|
|
Then for some $n \in \mathbb{N}$,
|
|
|
|
$$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
|
|
|
|
|
|
|
|
\end{theorem}
|
|
|
|
|
|
|
|
\begin{proof}
|
|
|
|
|
2023-04-21 20:17:47 +00:00
|
|
|
\href{Sequence/Geometric.lean}{Bookshelf.Real.Sequence.Geometric.sum_recursive_closed}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\end{document}
|