38 lines
1.0 KiB
Plaintext
38 lines
1.0 KiB
Plaintext
|
import Mathlib.Data.Fin.Basic
|
|||
|
import Mathlib.Tactic.NormNum
|
|||
|
|
|||
|
import Apostol.Real.Set.Partition
|
|||
|
import Bookshelf.Real.Basic
|
|||
|
|
|||
|
namespace Real.Function
|
|||
|
|
|||
|
/--
|
|||
|
Any member of a subinterval of a partition `P` must also be a member of `P`.
|
|||
|
-/
|
|||
|
lemma mem_open_subinterval_imp_mem_partition {p : Partition}
|
|||
|
(hI : I ∈ p.xs.pairwise (fun x₁ x₂ => i(x₁, x₂)))
|
|||
|
(hy : y ∈ I) : y ∈ p := by
|
|||
|
unfold List.pairwise at hI
|
|||
|
have ⟨ys, hys⟩ : ∃ ys, List.tail? p.xs = some ys := sorry
|
|||
|
conv at hI => arg 2; rw [hys]; simp only
|
|||
|
sorry
|
|||
|
|
|||
|
/--
|
|||
|
A `Step` function is a function `f` along with a proof of the existence of some
|
|||
|
partition `P` such that `f` is constant on every open subinterval of `P`.
|
|||
|
-/
|
|||
|
structure Step where
|
|||
|
p : Partition
|
|||
|
f : ∀ x ∈ p, ℝ
|
|||
|
const_open_subintervals :
|
|||
|
∀ (hI : I ∈ p.xs.pairwise (fun x₁ x₂ => i(x₁, x₂))),
|
|||
|
∃ c : ℝ, ∀ (hy : y ∈ I),
|
|||
|
f y (mem_open_subinterval_imp_mem_partition hI hy) = c
|
|||
|
|
|||
|
namespace Step
|
|||
|
|
|||
|
def set_def (f : Step) : Set ℝ² := sorry
|
|||
|
|
|||
|
-- TODO: Fill out
|
|||
|
|
|||
|
end Real.Function.Step
|