bookshelf/Bookshelf/Avigad/Chapter_8.lean

210 lines
5.3 KiB
Plaintext
Raw Permalink Normal View History

2023-05-08 19:43:54 +00:00
/-! # Avigad.Chapter8
2023-04-02 14:57:58 +00:00
Induction and Recursion
-/
2023-05-08 19:43:54 +00:00
namespace Avigad.Chapter8
2023-05-04 22:37:54 +00:00
/-! ### Exercise 1
2023-05-04 22:37:54 +00:00
Open a namespace `Hidden` to avoid naming conflicts, and use the equation
compiler to define addition, multiplication, and exponentiation on the natural
numbers. Then use the equation compiler to derive some of their basic
properties.
-/
2023-04-08 16:32:20 +00:00
namespace ex1
def add : Nat → Nat → Nat
| m, Nat.zero => m
| m, Nat.succ n => Nat.succ (add m n)
def mul : Nat → Nat → Nat
| _, Nat.zero => 0
| m, Nat.succ n => add m (mul m n)
def exp : Nat → Nat → Nat
| _, Nat.zero => 1
| m, Nat.succ n => mul m (exp m n)
end ex1
/-! ### Exercise 2
2023-05-04 22:37:54 +00:00
Similarly, use the equation compiler to define some basic operations on lists
(like the reverse function) and prove theorems about lists by induction (such as
the fact that `reverse (reverse xs) = xs` for any list `xs`).
-/
2023-04-08 16:32:20 +00:00
namespace ex2
variable {α : Type _}
def reverse : List α → List α
| [] => []
| (head :: tail) => reverse tail ++ [head]
-- Proof of `reverse (reverse xs) = xs` shown in previous exercise.
end ex2
/-! ### Exercise 3
2023-05-04 22:37:54 +00:00
Define your own function to carry out course-of-value recursion on the natural
numbers. Similarly, see if you can figure out how to define `WellFounded.fix` on
your own.
-/
2023-04-08 16:32:20 +00:00
namespace ex3
def below {motive : Nat → Sort u} (t : Nat) : Sort (max 1 u) :=
Nat.recOn t
(zero := PUnit)
(succ := fun n ih => PProd (PProd (motive n) ih) (PUnit : Sort (max 1 u)))
/--
A copied implementation of `Nat.brecOn` with the `motive` properly supplied.
Notice the `noncomputable` tag; the code generator does not support the `recOn`
recursor yet, for reasons I haven't fully understood yet. This thread touches on
the topic:
https://leanprover-community.github.io/archive/stream/270676-lean4/topic/code.20generator.20does.20not.20support.20recursor.html
-/
noncomputable def brecOn {motive : Nat → Sort u}
(t : Nat) (F : (t : Nat) → @below motive t → motive t) : motive t :=
(Nat.recOn t
(motive := fun n => PProd
(motive n)
(Nat.recOn n PUnit fun n ih => PProd (PProd (motive n) ih) PUnit))
(zero := { fst := F Nat.zero PUnit.unit, snd := PUnit.unit })
(succ := fun n ih => {
fst := F (Nat.succ n) { fst := ih, snd := PUnit.unit },
snd := { fst := ih, snd := PUnit.unit }
})).1
#check WellFounded.fix
end ex3
/-! ### Exercise 4
2023-05-04 22:37:54 +00:00
Following the examples in Section Dependent Pattern Matching, define a function
that will append two vectors. This is tricky; you will have to define an
auxiliary function.
-/
2023-04-08 16:32:20 +00:00
namespace ex4
inductive Vector (α : Type u) : Nat → Type u
| nil : Vector α 0
| cons : α → {n : Nat} → Vector α n → Vector α (n + 1)
namespace Vector
/--
As long we flip the indices in our type signature in the resulting summation,
there is no need for an auxiliary function.
-/
def append : Vector α m → Vector α n → Vector α (n + m)
| nil, bs => bs
| cons a as, bs => cons a (append as bs)
end Vector
end ex4
/-! ### Exercise 5
2023-05-04 22:37:54 +00:00
Consider the following type of arithmetic expressions.
-/
2023-04-08 16:32:20 +00:00
namespace ex5
inductive Expr where
| const : Nat → Expr
| var : Nat → Expr
| plus : Expr → Expr → Expr
| times : Expr → Expr → Expr
deriving Repr
open Expr
def sampleExpr : Expr :=
plus (times (var 0) (const 7)) (times (const 2) (var 1))
-- Here `sampleExpr` represents `(v₀ * 7) + (2 * v₁)`. Write a function that
-- evaluates such an expression, evaluating each `var n` to `v n`.
def eval (v : Nat → Nat) : Expr → Nat
| const n => n
| var n => v n
| plus e₁ e₂ => eval v e₁ + eval v e₂
| times e₁ e₂ => eval v e₁ * eval v e₂
def sampleVal : Nat → Nat
| 0 => 5
| 1 => 6
| _ => 0
-- Try it out. You should get 47 here.
#eval eval sampleVal sampleExpr
/-! ### Constant Fusion
2023-05-04 22:37:54 +00:00
Implement "constant fusion," a procedure that simplifies subterms like `5 + 7
to `12`. Using the auxiliary function `simpConst`, define a function "fuse": to
simplify a plus or a times, first simplify the arguments recursively, and then
apply `simpConst` to try to simplify the result.
-/
def simpConst : Expr → Expr
| plus (const n₁) (const n₂) => const (n₁ + n₂)
| times (const n₁) (const n₂) => const (n₁ * n₂)
| e => e
def fuse : Expr → Expr
| plus e₁ e₂ => simpConst $ plus (fuse e₁) (fuse e₂)
| times e₁ e₂ => simpConst $ times (fuse e₁) (fuse e₂)
| e => e
theorem simpConst_eq (v : Nat → Nat)
: ∀ e : Expr, eval v (simpConst e) = eval v e := by
intro e
unfold simpConst
repeat { unfold eval }
match h : e with
| const n
| var n
| plus (const _) (const _)
| plus (var _) _
| plus (plus _ _) _
| plus (times _ _) _
| times (const _) (const _)
| times (var _) _
| times (plus _ _) _
| times (times _ _) _ => rfl
| plus _ (var _)
| plus _ (plus _ _)
| plus _ (times _ _)
| times _ (var _)
| times _ (plus _ _)
| times _ (times _ _) => simp only
theorem fuse_eq (v : Nat → Nat)
: ∀ e : Expr, eval v (fuse e) = eval v e := by
intro e
induction e with
| const n | var n => unfold fuse; rfl
| plus e₁ e₂ he₁ he₂ | times e₁ e₂ he₁ he₂ =>
unfold fuse
rw [simpConst_eq]
unfold eval
rw [he₁, he₂]
-- The last two theorems show that the definitions preserve the value.
end ex5
2023-05-04 22:37:54 +00:00
end Avigad.Chapter8