bookshelf/Common/Geometry/StepFunction.lean

79 lines
1.9 KiB
Plaintext
Raw Permalink Normal View History

import Common.Geometry.Rectangle.Orthogonal
import Common.List.Basic
import Common.List.NonEmpty
/-! # Common.Geometry.StepFunction
Characterization of step functions.
-/
namespace Geometry
/--
An interval defines a range of values, characterized by a "left" value and a
"right" value. We require these values to be distinct; we do not support the
notion of an empty interval.
-/
structure Interval (α : Type _) [LT α] where
left : α
right : α
h : left < right
namespace Interval
/--
Computes the size of the interval.
-/
def size [LT α] [Sub α] (i : Interval α) : α := i.right - i.left
/--
Computes the midpoint of the interval.
-/
def midpoint [LT α] [Add α] [HDiv α α] (i : Interval α) : α :=
(i.left + i.right) / (2 : )
/--
Convert an `Interval` into a `Set.Ico`.
-/
def toIco [Preorder α] (i : Interval α) : Set α := Set.Ico i.left i.right
/--
Convert an `Interval` into a `Set.Ioc`.
-/
def toIoc [Preorder α] (i : Interval α) : Set α := Set.Ioc i.left i.right
/--
Convert an `Interval` into a `Set.Icc`.
-/
def toIcc [Preorder α] (i : Interval α) : Set α := Set.Icc i.left i.right
/--
Convert an `Interval` into a `Set.Ioo`.
-/
def toIoo [Preorder α] (i : Interval α) : Set α := Set.Ioo i.left i.right
end Interval
/--
A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction`
if there exists a partition `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is
constant on each open subinterval of `P`.
Instead of maintaining a function from `[a, b]` to ``, we instead maintain a
function that maps each partition index to some constant value.
-/
structure StepFunction where
ivls : List.NonEmpty (Interval )
connected : ∀ I ∈ ivls.toList.pairwise (·.right = ·.left), I
toFun : Fin ivls.length →
namespace StepFunction
/--
The ordinate set of the `StepFunction`.
-/
def toSet (sf : StepFunction) : Set Point := sorry
end StepFunction
end Geometry