import Lean import Lean.PrettyPrinter import Std.Data.HashMap import Lean.Meta.SynthInstance namespace DocGen4 open Lean Meta PrettyPrinter Std structure NameInfo where name : Name type : Syntax deriving Repr def NameInfo.prettyPrint (i : NameInfo) : CoreM String := do s!"{i.name} : {←PrettyPrinter.formatTerm i.type}" structure Info extends NameInfo where doc : Option String deriving Repr structure AxiomInfo extends Info where isUnsafe : Bool deriving Repr structure TheoremInfo extends Info where deriving Repr structure OpaqueInfo extends Info where value : Syntax isUnsafe : Bool deriving Repr structure DefinitionInfo extends Info where --value : Syntax unsafeInformation : DefinitionSafety hints : ReducibilityHints abbrev InstanceInfo := DefinitionInfo structure InductiveInfo extends Info where numParams : Nat -- Number of parameters numIndices : Nat -- Number of indices all : List Name -- List of all (including this one) inductive datatypes in the mutual declaration containing this one ctors : List NameInfo -- List of all constructors and their type for this inductive datatype isRec : Bool -- `true` Iff it is recursive isUnsafe : Bool isReflexive : Bool isNested : Bool deriving Repr structure FieldInfo extends NameInfo where projFn : Name subobject? : Option Name deriving Repr structure StructureInfo extends Info where fieldInfo : Array FieldInfo parents : Array Name ctor : NameInfo deriving Repr structure ClassInfo extends StructureInfo where hasOutParam : Bool instances : Array Syntax deriving Repr inductive DocInfo where | axiomInfo (info : AxiomInfo) : DocInfo | theoremInfo (info : TheoremInfo) : DocInfo | opaqueInfo (info : OpaqueInfo) : DocInfo | definitionInfo (info : DefinitionInfo) : DocInfo | instanceInfo (info : InstanceInfo) : DocInfo | inductiveInfo (info : InductiveInfo) : DocInfo | structureInfo (info : StructureInfo) : DocInfo | classInfo (info : ClassInfo) : DocInfo structure Module where name : Name doc : Option String members : Array DocInfo deriving Inhabited def prettyPrintTerm (expr : Expr) : MetaM Syntax := do let ((expr, _), _) ← Elab.Term.TermElabM.run $ Elab.Term.levelMVarToParam (←instantiateMVars expr) let term ← delab Name.anonymous [] expr parenthesizeTerm term def Info.ofConstantVal (v : ConstantVal) : MetaM Info := do let env ← getEnv let type ← prettyPrintTerm v.type let doc := findDocString? env v.name return Info.mk ⟨v.name, type⟩ doc def AxiomInfo.ofAxiomVal (v : AxiomVal) : MetaM AxiomInfo := do let info ← Info.ofConstantVal v.toConstantVal return AxiomInfo.mk info v.isUnsafe def TheoremInfo.ofTheoremVal (v : TheoremVal) : MetaM TheoremInfo := do let info ← Info.ofConstantVal v.toConstantVal return TheoremInfo.mk info def OpaqueInfo.ofOpaqueVal (v : OpaqueVal) : MetaM OpaqueInfo := do let info ← Info.ofConstantVal v.toConstantVal let value ← prettyPrintTerm v.value return OpaqueInfo.mk info value v.isUnsafe def isInstance (declName : Name) : MetaM Bool := do (instanceExtension.getState (←getEnv)).instanceNames.contains declName def DefinitionInfo.ofDefinitionVal (v : DefinitionVal) : MetaM DefinitionInfo := do let info ← Info.ofConstantVal v.toConstantVal -- Elaborating the value yields weird exceptions --let value ← prettyPrintTerm v.value return DefinitionInfo.mk info v.safety v.hints def getConstructorType (ctor : Name) : MetaM Syntax := do let env ← getEnv match env.find? ctor with | some (ConstantInfo.ctorInfo i) => ←prettyPrintTerm i.type | _ => panic! s!"Constructor {ctor} was requested but does not exist" -- TODO: Obtain parameters that come after the inductive Name def InductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM InductiveInfo := do let info ← Info.ofConstantVal v.toConstantVal let env ← getEnv let ctors ← v.ctors.mapM (λ name => do NameInfo.mk name (←getConstructorType name)) return InductiveInfo.mk info v.numParams v.numIndices v.all ctors v.isRec v.isUnsafe v.isReflexive v.isNested def getFieldTypeAux (type : Expr) (vars : List Name) : (Expr × List Name) := match type with | Expr.forallE `self _ b .. => (b, (`self :: vars)) | Expr.forallE n _ b .. => getFieldTypeAux b (n :: vars) | _ => (type, vars) def getFieldType (projFn : Name) : MetaM Expr := do let fn ← mkConstWithFreshMVarLevels projFn let type ← inferType fn let (type, vars) := getFieldTypeAux type [] type.instantiate $ vars.toArray.map mkConst def FieldInfo.ofStructureFieldInfo (i : StructureFieldInfo) : MetaM FieldInfo := do let type ← getFieldType i.projFn let ni := NameInfo.mk i.fieldName (←prettyPrintTerm type) FieldInfo.mk ni i.projFn i.subobject? def StructureInfo.ofInductiveVal (v : InductiveVal) : MetaM StructureInfo := do let info ← Info.ofConstantVal v.toConstantVal let env ← getEnv let parents := getParentStructures env v.name let ctor := getStructureCtor env v.name |>.name let ctorType ← getConstructorType ctor match getStructureInfo? env v.name with | some i => let fieldInfos ← i.fieldInfo.mapM FieldInfo.ofStructureFieldInfo return StructureInfo.mk info fieldInfos parents ⟨ctor, ctorType⟩ | none => panic! s!"{v.name} is not a structure" def ClassInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInfo := do let sinfo ← StructureInfo.ofInductiveVal v let fn ← mkConstWithFreshMVarLevels v.name let (xs, _, _) ← forallMetaTelescopeReducing (← inferType fn) let insts ← SynthInstance.getInstances (mkAppN fn xs) let insts_stx ← insts.mapM prettyPrintTerm return ClassInfo.mk sinfo (hasOutParams (←getEnv) v.name) insts_stx namespace DocInfo def isBlackListed (declName : Name) : MetaM Bool := do let env ← getEnv declName.isInternal <||> isAuxRecursor env declName <||> isNoConfusion env declName <||> isRec declName <||> isMatcher declName -- TODO: Is this actually the best way? def isProjFn (declName : Name) : MetaM Bool := do let env ← getEnv match declName with | Name.str parent name _ => if isStructure env parent then match getStructureInfo? env parent with | some i => match i.fieldNames.find? (· == name) with | some _ => true | none => false | none => panic! s!"{parent} is not a structure" else false | _ => false def ofConstant : (Name × ConstantInfo) → MetaM (Option DocInfo) := λ (name, info) => do if (←isBlackListed name) then return none match info with | ConstantInfo.axiomInfo i => some $ axiomInfo (←AxiomInfo.ofAxiomVal i) | ConstantInfo.thmInfo i => some $ theoremInfo (←TheoremInfo.ofTheoremVal i) | ConstantInfo.opaqueInfo i => some $ opaqueInfo (←OpaqueInfo.ofOpaqueVal i) -- TODO: Find a way to extract equations nicely | ConstantInfo.defnInfo i => if ← (isProjFn i.name) then none else let info ← DefinitionInfo.ofDefinitionVal i if (←isInstance i.name) then some $ instanceInfo info else some $ definitionInfo info -- TODO: Differentiate between all the different types of inductives (structures, classes etc.) | ConstantInfo.inductInfo i => let env ← getEnv if isStructure env i.name then if isClass env i.name then some $ classInfo (←ClassInfo.ofInductiveVal i) else some $ structureInfo (←StructureInfo.ofInductiveVal i) else some $ inductiveInfo (←InductiveInfo.ofInductiveVal i) -- we ignore these for now | ConstantInfo.ctorInfo i => none | ConstantInfo.recInfo i => none | ConstantInfo.quotInfo i => none def prettyPrint (i : DocInfo) : CoreM String := do match i with | axiomInfo i => s!"axiom {←i.toNameInfo.prettyPrint}, doc string: {i.doc}" | theoremInfo i => s!"theorem {←i.toNameInfo.prettyPrint}, doc string: {i.doc}" | opaqueInfo i => s!"constant {←i.toNameInfo.prettyPrint}, doc string: {i.doc}" | definitionInfo i => s!"def {←i.toNameInfo.prettyPrint}, doc string: {i.doc}" | instanceInfo i => s!"instance {←i.toNameInfo.prettyPrint}, doc string: {i.doc}" | inductiveInfo i => let ctorString ← i.ctors.mapM NameInfo.prettyPrint s!"inductive {←i.toNameInfo.prettyPrint}, ctors: {ctorString}, doc string: {i.doc}" | structureInfo i => let ctorString ← i.ctor.prettyPrint let fieldString ← i.fieldInfo.mapM (λ f => do s!"{f.name} : {←PrettyPrinter.formatTerm f.type}") s!"structure {←i.toNameInfo.prettyPrint} extends {i.parents}, ctor: {ctorString}, fields : {fieldString}, doc string: {i.doc}" | classInfo i => let instanceString ← i.instances.mapM PrettyPrinter.formatTerm let fieldString ← i.fieldInfo.mapM (NameInfo.prettyPrint ∘ FieldInfo.toNameInfo) s!"class {←i.toNameInfo.prettyPrint} extends {i.parents}, fields: {fieldString}, instances : {instanceString}, doc string: {i.doc}" end DocInfo namespace Module def prettyPrint (m : Module) : CoreM String := do let pretty := s!"Module {m.name}, doc string: {m.doc} with members:\n" Array.foldlM (λ p mem => return p ++ " " ++ (←mem.prettyPrint) ++ "\n") pretty m.members end Module def process : MetaM (HashMap Name Module) := do let env ← getEnv let mut res := mkHashMap env.header.moduleNames.size for module in env.header.moduleNames do -- TODO: Check why modules can have multiple doc strings and add that later on let moduleDoc := match getModuleDoc? env module with | none => none | some #[] => none | some doc => doc.get! 0 res := res.insert module (Module.mk module moduleDoc #[]) for cinfo in env.constants.toList do let d := ←DocInfo.ofConstant cinfo match d with | some dinfo => match (env.getModuleIdxFor? cinfo.fst) with | some modidx => -- TODO: Check whether this is still efficient let moduleName := env.allImportedModuleNames.get! modidx let module := res.find! moduleName res := res.insert moduleName {module with members := module.members.push dinfo} | none => panic! "impossible" | none => () return res end DocGen4