/- Copyright (c) 2021 Henrik Böving. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henrik Böving -/ import Lean import Lean.PrettyPrinter import Std.Data.HashMap import Lean.Meta.SynthInstance import DocGen4.Hierarchy import DocGen4.Attributes namespace DocGen4 open Lean Meta PrettyPrinter Std Widget structure NameInfo where name : Name type : CodeWithInfos deriving Inhabited structure Arg where name : Name type : CodeWithInfos binderInfo : BinderInfo structure Info extends NameInfo where args : Array Arg doc : Option String declarationRange : DeclarationRange attrs : Array String deriving Inhabited structure AxiomInfo extends Info where isUnsafe : Bool deriving Inhabited structure TheoremInfo extends Info deriving Inhabited structure OpaqueInfo extends Info where value : CodeWithInfos -- A value of partial is interpreted as this constant being part of a partial def -- since the actual definition for a partial def is hidden behind an inaccessible value unsafeInformation : DefinitionSafety deriving Inhabited structure DefinitionInfo extends Info where -- partial defs are handled by OpaqueInfo isUnsafe : Bool hints : ReducibilityHints equations : Option (Array CodeWithInfos) isComputable : Bool deriving Inhabited abbrev InstanceInfo := DefinitionInfo structure InductiveInfo extends Info where ctors : List NameInfo -- List of all constructors and their type for this inductive datatype isUnsafe : Bool deriving Inhabited structure StructureInfo extends Info where fieldInfo : Array NameInfo parents : Array Name ctor : NameInfo deriving Inhabited structure ClassInfo extends StructureInfo where instances : Array Name deriving Inhabited structure ClassInductiveInfo extends InductiveInfo where instances : Array Name deriving Inhabited inductive DocInfo where | axiomInfo (info : AxiomInfo) : DocInfo | theoremInfo (info : TheoremInfo) : DocInfo | opaqueInfo (info : OpaqueInfo) : DocInfo | definitionInfo (info : DefinitionInfo) : DocInfo | instanceInfo (info : InstanceInfo) : DocInfo | inductiveInfo (info : InductiveInfo) : DocInfo | structureInfo (info : StructureInfo) : DocInfo | classInfo (info : ClassInfo) : DocInfo | classInductiveInfo (info : ClassInductiveInfo) : DocInfo deriving Inhabited namespace DocInfo def getDeclarationRange : DocInfo → DeclarationRange | axiomInfo i => i.declarationRange | theoremInfo i => i.declarationRange | opaqueInfo i => i.declarationRange | definitionInfo i => i.declarationRange | instanceInfo i => i.declarationRange | inductiveInfo i => i.declarationRange | structureInfo i => i.declarationRange | classInfo i => i.declarationRange | classInductiveInfo i => i.declarationRange def lineOrder (l r : DocInfo) : Bool := l.getDeclarationRange.pos.line < r.getDeclarationRange.pos.line end DocInfo structure Module where name : Name doc : Option String -- Sorted according to their line numbers members : Array DocInfo deriving Inhabited partial def typeToArgsType (e : Expr) : (Array (Name × Expr × BinderInfo) × Expr) := let helper := λ name type body data => -- Once we hit a name with a macro scope we stop traversing the expression -- and print what is left after the : instead. The only exception -- to this is instances since these almost never have a name -- but should still be printed as arguments instead of after the :. if name.hasMacroScopes ∧ ¬data.binderInfo.isInstImplicit then (#[], e) else let name := name.eraseMacroScopes let arg := (name, type, data.binderInfo) let (args, final) := typeToArgsType (Expr.instantiate1 body (mkFVar ⟨name⟩)) (#[arg] ++ args, final) match e.consumeMData with | Expr.lam name type body data => helper name type body data | Expr.forallE name type body data => helper name type body data | _ => (#[], e) def prettyPrintTerm (expr : Expr) : MetaM CodeWithInfos := do let (fmt, infos) ← formatInfos expr let tt := TaggedText.prettyTagged fmt let ctx := { env := ← getEnv mctx := ← getMCtx options := ← getOptions currNamespace := ← getCurrNamespace openDecls := ← getOpenDecls fileMap := default } pure $ tagExprInfos ctx infos tt def Info.ofConstantVal (v : ConstantVal) : MetaM Info := do let env ← getEnv let (args, type) := typeToArgsType v.type let type ← prettyPrintTerm type let args ← args.mapM (λ (n, e, b) => do pure $ Arg.mk n (←prettyPrintTerm e) b) let doc ← findDocString? env v.name match ←findDeclarationRanges? v.name with -- TODO: Maybe selection range is more relevant? Figure this out in the future | some range => pure $ Info.mk ⟨v.name, type⟩ args doc range.range (←getAllAttributes v.name) | none => panic! s!"{v.name} is a declaration without position" def AxiomInfo.ofAxiomVal (v : AxiomVal) : MetaM AxiomInfo := do let info ← Info.ofConstantVal v.toConstantVal pure $ AxiomInfo.mk info v.isUnsafe def TheoremInfo.ofTheoremVal (v : TheoremVal) : MetaM TheoremInfo := do let info ← Info.ofConstantVal v.toConstantVal pure $ TheoremInfo.mk info def OpaqueInfo.ofOpaqueVal (v : OpaqueVal) : MetaM OpaqueInfo := do let info ← Info.ofConstantVal v.toConstantVal let t ← prettyPrintTerm v.value let env ← getEnv let isPartial := env.find? (Compiler.mkUnsafeRecName v.name) |>.isSome if isPartial then pure $ OpaqueInfo.mk info t DefinitionSafety.partial else let safety := if v.isUnsafe then DefinitionSafety.unsafe else DefinitionSafety.safe pure $ OpaqueInfo.mk info t safety def isInstance (declName : Name) : MetaM Bool := do pure $ (instanceExtension.getState (←getEnv)).instanceNames.contains declName partial def stripArgs (e : Expr) : Expr := match e.consumeMData with | Expr.lam name type body data => let name := name.eraseMacroScopes stripArgs (Expr.instantiate1 body (mkFVar ⟨name⟩)) | Expr.forallE name type body data => let name := name.eraseMacroScopes stripArgs (Expr.instantiate1 body (mkFVar ⟨name⟩)) | _ => e def processEq (eq : Name) : MetaM CodeWithInfos := do let type ← (mkConstWithFreshMVarLevels eq >>= inferType) let final := stripArgs type prettyPrintTerm final def valueToEq (v : DefinitionVal) : MetaM Expr := withLCtx {} {} do let env ← getEnv withOptions (tactic.hygienic.set . false) do lambdaTelescope v.value fun xs body => do let us := v.levelParams.map mkLevelParam let type ← mkEq (mkAppN (Lean.mkConst v.name us) xs) body let type ← mkForallFVars xs type pure type -- The following code is translated from ll_infer_type.cpp def computable? (defn : Name) : MetaM Bool := do let cstage2Name := defn.append `_cstage2 let env ← getEnv pure $ env.find? cstage2Name |>.isSome def DefinitionInfo.ofDefinitionVal (v : DefinitionVal) : MetaM DefinitionInfo := do let info ← Info.ofConstantVal v.toConstantVal let isUnsafe := v.safety == DefinitionSafety.unsafe let isComputable ← computable? v.name try let eqs? ← getEqnsFor? v.name match eqs? with | some eqs => let prettyEqs ← eqs.mapM processEq pure $ DefinitionInfo.mk info isUnsafe v.hints prettyEqs isComputable | none => let eq ← prettyPrintTerm $ stripArgs (←valueToEq v) pure $ DefinitionInfo.mk info isUnsafe v.hints (some #[eq]) isComputable catch err => IO.println s!"WARNING: Failed to calculate equational lemmata for {v.name}: {←err.toMessageData.toString}" pure $ DefinitionInfo.mk info isUnsafe v.hints none isComputable def InstanceInfo.ofDefinitionVal (v : DefinitionVal) : MetaM InstanceInfo := do let info ← DefinitionInfo.ofDefinitionVal v let some className := getClassName (←getEnv) v.type | unreachable! if let some instAttr ← getDefaultInstance v.name className then pure { info with attrs := info.attrs.push instAttr } else pure info def getConstructorType (ctor : Name) : MetaM CodeWithInfos := do let env ← getEnv match env.find? ctor with | some (ConstantInfo.ctorInfo i) => prettyPrintTerm i.type | _ => panic! s!"Constructor {ctor} was requested but does not exist" def InductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM InductiveInfo := do let info ← Info.ofConstantVal v.toConstantVal let env ← getEnv let ctors ← v.ctors.mapM (λ name => do pure $ NameInfo.mk name (←getConstructorType name)) pure $ InductiveInfo.mk info ctors v.isUnsafe def dropArgs (type : Expr) (n : Nat) : (Expr × List (Name × Expr)) := match type, n with | e, 0 => (e, []) | Expr.forallE name type body _, x + 1 => let body := body.instantiate1 $ mkFVar ⟨name⟩ let next := dropArgs body x { next with snd := (name, type) :: next.snd} | e, x + 1 => panic! s!"No forallE left" def getFieldTypes (struct : Name) (ctor : ConstructorVal) (parents : Nat) : MetaM (Array NameInfo) := do let type := ctor.type let (field_function, params) := dropArgs type (ctor.numParams + parents) let (_, fields) := dropArgs field_function (ctor.numFields - parents) let mut field_infos := #[] for (name, type) in fields do field_infos := field_infos.push { name := struct.append name, type := ←prettyPrintTerm type} pure $ field_infos def StructureInfo.ofInductiveVal (v : InductiveVal) : MetaM StructureInfo := do let info ← Info.ofConstantVal v.toConstantVal let env ← getEnv let parents := getParentStructures env v.name let ctor := getStructureCtor env v.name let ctorType ← prettyPrintTerm ctor.type match getStructureInfo? env v.name with | some i => if i.fieldNames.size - parents.size > 0 then pure $ StructureInfo.mk info (←getFieldTypes v.name ctor parents.size) parents ⟨ctor.name, ctorType⟩ else pure $ StructureInfo.mk info #[] parents ⟨ctor.name, ctorType⟩ | none => panic! s!"{v.name} is not a structure" def getInstances (className : Name) : MetaM (Array Name) := do let fn ← mkConstWithFreshMVarLevels className let (xs, _, _) ← forallMetaTelescopeReducing (← inferType fn) let insts ← SynthInstance.getInstances (mkAppN fn xs) pure $ insts.map Expr.constName! def ClassInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInfo := do let sinfo ← StructureInfo.ofInductiveVal v pure $ ClassInfo.mk sinfo (←getInstances v.name) def ClassInductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInductiveInfo := do let info ← InductiveInfo.ofInductiveVal v pure $ ClassInductiveInfo.mk info (←getInstances v.name) namespace DocInfo def isBlackListed (declName : Name) : MetaM Bool := do match ←findDeclarationRanges? declName with | some _ => let env ← getEnv pure (declName.isInternal) <||> (pure $ isAuxRecursor env declName) <||> (pure $ isNoConfusion env declName) <||> isRec declName <||> isMatcher declName -- TODO: Evaluate whether filtering out declarations without range is sensible | none => pure true -- TODO: Is this actually the best way? def isProjFn (declName : Name) : MetaM Bool := do let env ← getEnv match declName with | Name.str parent name _ => if isStructure env parent then match getStructureInfo? env parent with | some i => match i.fieldNames.find? (· == name) with | some _ => pure true | none => pure false | none => panic! s!"{parent} is not a structure" else pure false | _ => pure false def ofConstant : (Name × ConstantInfo) → MetaM (Option DocInfo) := λ (name, info) => do if (←isBlackListed name) then return none match info with | ConstantInfo.axiomInfo i => pure <| some <| axiomInfo (←AxiomInfo.ofAxiomVal i) | ConstantInfo.thmInfo i => pure <| some <| theoremInfo (←TheoremInfo.ofTheoremVal i) | ConstantInfo.opaqueInfo i => pure <| some <| opaqueInfo (←OpaqueInfo.ofOpaqueVal i) | ConstantInfo.defnInfo i => if ← (isProjFn i.name) then pure none else if (←isInstance i.name) then let info ← InstanceInfo.ofDefinitionVal i pure <| some <| instanceInfo info else let info ← DefinitionInfo.ofDefinitionVal i pure <| some <| definitionInfo info | ConstantInfo.inductInfo i => let env ← getEnv if isStructure env i.name then if isClass env i.name then pure <| some <| classInfo (←ClassInfo.ofInductiveVal i) else pure <| some <| structureInfo (←StructureInfo.ofInductiveVal i) else if isClass env i.name then pure <| some <| classInductiveInfo (←ClassInductiveInfo.ofInductiveVal i) else pure <| some <| inductiveInfo (←InductiveInfo.ofInductiveVal i) -- we ignore these for now | ConstantInfo.ctorInfo i => pure none | ConstantInfo.recInfo i => pure none | ConstantInfo.quotInfo i => pure none def getName : DocInfo → Name | axiomInfo i => i.name | theoremInfo i => i.name | opaqueInfo i => i.name | definitionInfo i => i.name | instanceInfo i => i.name | inductiveInfo i => i.name | structureInfo i => i.name | classInfo i => i.name | classInductiveInfo i => i.name def getKind : DocInfo → String | axiomInfo _ => "axiom" | theoremInfo _ => "theorem" | opaqueInfo _ => "constant" | definitionInfo _ => "def" | instanceInfo _ => "instance" | inductiveInfo _ => "inductive" | structureInfo _ => "structure" | classInfo _ => "class" | classInductiveInfo _ => "class" def getKindDescription : DocInfo → String | axiomInfo i => if i.isUnsafe then "unsafe axiom" else "axiom" | theoremInfo _ => "theorem" | opaqueInfo i => match i.unsafeInformation with | DefinitionSafety.safe => "constant" | DefinitionSafety.unsafe => "unsafe constant" | DefinitionSafety.partial => "partial def" | definitionInfo i => Id.run do if i.hints.isAbbrev then pure "abbrev" else let mut modifiers := #[] if i.isUnsafe then modifiers := modifiers.push "unsafe" if ¬i.isComputable then modifiers := modifiers.push "noncomputable" modifiers := modifiers.push "def" pure $ String.intercalate " " modifiers.toList | instanceInfo i => Id.run do let mut modifiers := #[] if i.isUnsafe then modifiers := modifiers.push "unsafe" if ¬i.isComputable then modifiers := modifiers.push "noncomputable" modifiers := modifiers.push "instance" pure $ String.intercalate " " modifiers.toList | inductiveInfo i => if i.isUnsafe then "unsafe inductive" else "inductive" | structureInfo _ => "structure" | classInfo _ => "class" | classInductiveInfo _ => "class inductive" def getType : DocInfo → CodeWithInfos | axiomInfo i => i.type | theoremInfo i => i.type | opaqueInfo i => i.type | definitionInfo i => i.type | instanceInfo i => i.type | inductiveInfo i => i.type | structureInfo i => i.type | classInfo i => i.type | classInductiveInfo i => i.type def getArgs : DocInfo → Array Arg | axiomInfo i => i.args | theoremInfo i => i.args | opaqueInfo i => i.args | definitionInfo i => i.args | instanceInfo i => i.args | inductiveInfo i => i.args | structureInfo i => i.args | classInfo i => i.args | classInductiveInfo i => i.args def getAttrs : DocInfo → Array String | axiomInfo i => i.attrs | theoremInfo i => i.attrs | opaqueInfo i => i.attrs | definitionInfo i => i.attrs | instanceInfo i => i.attrs | inductiveInfo i => i.attrs | structureInfo i => i.attrs | classInfo i => i.attrs | classInductiveInfo i => i.attrs end DocInfo structure AnalyzerResult where name2ModIdx : HashMap Name ModuleIdx moduleNames : Array Name moduleInfo : HashMap Name Module hierarchy : Hierarchy -- Indexed by ModIdx importAdj : Array (Array Bool) deriving Inhabited def process : MetaM AnalyzerResult := do let env ← getEnv let mut res := mkHashMap env.header.moduleNames.size for module in env.header.moduleNames do -- TODO: Check why modules can have multiple doc strings and add that later on let moduleDoc := match getModuleDoc? env module with | none => none | some #[] => none | some doc => doc.get! 0 res := res.insert module (Module.mk module moduleDoc #[]) for cinfo in env.constants.toList do try let analysis := Prod.fst <$> Meta.MetaM.toIO (DocInfo.ofConstant cinfo) { maxHeartbeats := 5000000, options := ⟨[(`pp.tagAppFns, true)]⟩ } { env := env} {} {} if let some dinfo ← analysis then let some modidx := env.getModuleIdxFor? dinfo.getName | unreachable! let moduleName := env.allImportedModuleNames.get! modidx let module := res.find! moduleName res := res.insert moduleName {module with members := module.members.push dinfo} catch e => IO.println s!"WARNING: Failed to obtain information for: {cinfo.fst}: {←e.toMessageData.toString}" -- TODO: This is definitely not the most efficient way to store this data let mut adj := Array.mkArray res.size (Array.mkArray res.size false) -- TODO: This could probably be faster if we did an insertion sort above instead for (moduleName, module) in res.toArray do res := res.insert moduleName {module with members := module.members.qsort DocInfo.lineOrder} let some modIdx := env.getModuleIdx? moduleName | unreachable! let moduleData := env.header.moduleData.get! modIdx for imp in moduleData.imports do let some importIdx := env.getModuleIdx? imp.module | unreachable! adj := adj.set! modIdx (adj.get! modIdx |>.set! importIdx true) pure { name2ModIdx := env.const2ModIdx, moduleNames := env.header.moduleNames, moduleInfo := res, hierarchy := Hierarchy.fromArray env.header.moduleNames, importAdj := adj } end DocGen4