refactor: finally split upt the process module

main
Henrik Böving 2022-05-20 00:36:21 +02:00
parent 8e70777059
commit b58b1b315b
13 changed files with 717 additions and 529 deletions

View File

@ -4,533 +4,17 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import Lean.PrettyPrinter
import Std.Data.HashMap
import Lean.Meta.SynthInstance
import DocGen4.Process.Hierarchy
import DocGen4.Process.Analyze
import DocGen4.Process.Attributes
namespace DocGen4
open Lean Meta PrettyPrinter Std Widget
structure NameInfo where
name : Name
type : CodeWithInfos
doc : Option String
deriving Inhabited
structure Arg where
name : Name
type : CodeWithInfos
binderInfo : BinderInfo
structure Info extends NameInfo where
args : Array Arg
declarationRange : DeclarationRange
attrs : Array String
deriving Inhabited
structure AxiomInfo extends Info where
isUnsafe : Bool
deriving Inhabited
structure TheoremInfo extends Info
deriving Inhabited
structure OpaqueInfo extends Info where
value : CodeWithInfos
-- A value of partial is interpreted as this constant being part of a partial def
-- since the actual definition for a partial def is hidden behind an inaccessible value
unsafeInformation : DefinitionSafety
deriving Inhabited
structure DefinitionInfo extends Info where
-- partial defs are handled by OpaqueInfo
isUnsafe : Bool
hints : ReducibilityHints
equations : Option (Array CodeWithInfos)
isNonComputable : Bool
deriving Inhabited
abbrev InstanceInfo := DefinitionInfo
structure InductiveInfo extends Info where
ctors : List NameInfo -- List of all constructors and their type for this inductive datatype
isUnsafe : Bool
deriving Inhabited
structure StructureInfo extends Info where
fieldInfo : Array NameInfo
parents : Array Name
ctor : NameInfo
deriving Inhabited
structure ClassInfo extends StructureInfo where
instances : Array Name
deriving Inhabited
structure ClassInductiveInfo extends InductiveInfo where
instances : Array Name
deriving Inhabited
inductive DocInfo where
| axiomInfo (info : AxiomInfo) : DocInfo
| theoremInfo (info : TheoremInfo) : DocInfo
| opaqueInfo (info : OpaqueInfo) : DocInfo
| definitionInfo (info : DefinitionInfo) : DocInfo
| instanceInfo (info : InstanceInfo) : DocInfo
| inductiveInfo (info : InductiveInfo) : DocInfo
| structureInfo (info : StructureInfo) : DocInfo
| classInfo (info : ClassInfo) : DocInfo
| classInductiveInfo (info : ClassInductiveInfo) : DocInfo
deriving Inhabited
namespace DocInfo
def getDeclarationRange : DocInfo → DeclarationRange
| axiomInfo i => i.declarationRange
| theoremInfo i => i.declarationRange
| opaqueInfo i => i.declarationRange
| definitionInfo i => i.declarationRange
| instanceInfo i => i.declarationRange
| inductiveInfo i => i.declarationRange
| structureInfo i => i.declarationRange
| classInfo i => i.declarationRange
| classInductiveInfo i => i.declarationRange
end DocInfo
inductive ModuleMember where
| docInfo (info : DocInfo) : ModuleMember
| modDoc (doc : ModuleDoc) : ModuleMember
deriving Inhabited
structure Module where
name : Name
-- Sorted according to their line numbers
members : Array ModuleMember
deriving Inhabited
partial def typeToArgsType (e : Expr) : (Array (Name × Expr × BinderInfo) × Expr) :=
let helper := λ name type body data =>
-- Once we hit a name with a macro scope we stop traversing the expression
-- and print what is left after the : instead. The only exception
-- to this is instances since these almost never have a name
-- but should still be printed as arguments instead of after the :.
if name.hasMacroScopes ∧ ¬data.binderInfo.isInstImplicit then
(#[], e)
else
let name := name.eraseMacroScopes
let arg := (name, type, data.binderInfo)
let (args, final) := typeToArgsType (Expr.instantiate1 body (mkFVar ⟨name⟩))
(#[arg] ++ args, final)
match e.consumeMData with
| Expr.lam name type body data => helper name type body data
| Expr.forallE name type body data => helper name type body data
| _ => (#[], e)
def prettyPrintTerm (expr : Expr) : MetaM CodeWithInfos := do
let (fmt, infos) ← formatInfos expr
let tt := TaggedText.prettyTagged fmt
let ctx := {
env := ← getEnv
mctx := ← getMCtx
options := ← getOptions
currNamespace := ← getCurrNamespace
openDecls := ← getOpenDecls
fileMap := default,
ngen := ← getNGen
}
pure $ tagExprInfos ctx infos tt
def NameInfo.ofTypedName (n : Name) (t : Expr) : MetaM NameInfo := do
let env ← getEnv
pure { name := n, type := ←prettyPrintTerm t, doc := ←findDocString? env n}
def Info.ofConstantVal (v : ConstantVal) : MetaM Info := do
let env ← getEnv
let (args, type) := typeToArgsType v.type
let args ← args.mapM (λ (n, e, b) => do pure $ Arg.mk n (←prettyPrintTerm e) b)
let doc ← findDocString? env v.name
let nameInfo ← NameInfo.ofTypedName v.name type
match ←findDeclarationRanges? v.name with
-- TODO: Maybe selection range is more relevant? Figure this out in the future
| some range => pure $ Info.mk nameInfo args range.range (←getAllAttributes v.name)
| none => panic! s!"{v.name} is a declaration without position"
def AxiomInfo.ofAxiomVal (v : AxiomVal) : MetaM AxiomInfo := do
let info ← Info.ofConstantVal v.toConstantVal
pure $ AxiomInfo.mk info v.isUnsafe
def TheoremInfo.ofTheoremVal (v : TheoremVal) : MetaM TheoremInfo := do
let info ← Info.ofConstantVal v.toConstantVal
pure $ TheoremInfo.mk info
def OpaqueInfo.ofOpaqueVal (v : OpaqueVal) : MetaM OpaqueInfo := do
let info ← Info.ofConstantVal v.toConstantVal
let t ← prettyPrintTerm v.value
let env ← getEnv
let isPartial := env.find? (Compiler.mkUnsafeRecName v.name) |>.isSome
if isPartial then
pure $ OpaqueInfo.mk info t DefinitionSafety.partial
else
let safety := if v.isUnsafe then DefinitionSafety.unsafe else DefinitionSafety.safe
pure $ OpaqueInfo.mk info t safety
def isInstance (declName : Name) : MetaM Bool := do
pure $ (instanceExtension.getState (←getEnv)).instanceNames.contains declName
partial def stripArgs (e : Expr) : Expr :=
match e.consumeMData with
| Expr.lam name type body data =>
let name := name.eraseMacroScopes
stripArgs (Expr.instantiate1 body (mkFVar ⟨name⟩))
| Expr.forallE name type body data =>
let name := name.eraseMacroScopes
stripArgs (Expr.instantiate1 body (mkFVar ⟨name⟩))
| _ => e
def processEq (eq : Name) : MetaM CodeWithInfos := do
let type ← (mkConstWithFreshMVarLevels eq >>= inferType)
let final := stripArgs type
prettyPrintTerm final
def valueToEq (v : DefinitionVal) : MetaM Expr := withLCtx {} {} do
let env ← getEnv
withOptions (tactic.hygienic.set . false) do
lambdaTelescope v.value fun xs body => do
let us := v.levelParams.map mkLevelParam
let type ← mkEq (mkAppN (Lean.mkConst v.name us) xs) body
let type ← mkForallFVars xs type
pure type
def DefinitionInfo.ofDefinitionVal (v : DefinitionVal) : MetaM DefinitionInfo := do
let info ← Info.ofConstantVal v.toConstantVal
let isUnsafe := v.safety == DefinitionSafety.unsafe
let isNonComput := isNoncomputable (←getEnv) v.name
try
let eqs? ← getEqnsFor? v.name
match eqs? with
| some eqs =>
let prettyEqs ← eqs.mapM processEq
pure $ DefinitionInfo.mk info isUnsafe v.hints prettyEqs isNonComput
| none =>
let eq ← prettyPrintTerm $ stripArgs (←valueToEq v)
pure $ DefinitionInfo.mk info isUnsafe v.hints (some #[eq]) isNonComput
catch err =>
IO.println s!"WARNING: Failed to calculate equational lemmata for {v.name}: {←err.toMessageData.toString}"
pure $ DefinitionInfo.mk info isUnsafe v.hints none isNonComput
def InstanceInfo.ofDefinitionVal (v : DefinitionVal) : MetaM InstanceInfo := do
let info ← DefinitionInfo.ofDefinitionVal v
let some className := getClassName (←getEnv) v.type | unreachable!
if let some instAttr ← getDefaultInstance v.name className then
pure { info with attrs := info.attrs.push instAttr }
else
pure info
def getConstructorType (ctor : Name) : MetaM Expr := do
let env ← getEnv
match env.find? ctor with
| some (ConstantInfo.ctorInfo i) => pure i.type
| _ => panic! s!"Constructor {ctor} was requested but does not exist"
def InductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM InductiveInfo := do
let info ← Info.ofConstantVal v.toConstantVal
let env ← getEnv
let ctors ← v.ctors.mapM (λ name => do NameInfo.ofTypedName name (←getConstructorType name))
pure $ InductiveInfo.mk info ctors v.isUnsafe
def dropArgs (type : Expr) (n : Nat) : (Expr × List (Name × Expr)) :=
match type, n with
| e, 0 => (e, [])
| Expr.forallE name type body _, x + 1 =>
let body := body.instantiate1 $ mkFVar ⟨name⟩
let next := dropArgs body x
{ next with snd := (name, type) :: next.snd}
| e, x + 1 => panic! s!"No forallE left"
def getFieldTypes (struct : Name) (ctor : ConstructorVal) (parents : Nat) : MetaM (Array NameInfo) := do
let type := ctor.type
let (fieldFunction, params) := dropArgs type (ctor.numParams + parents)
let (_, fields) := dropArgs fieldFunction (ctor.numFields - parents)
let mut fieldInfos := #[]
for (name, type) in fields do
fieldInfos := fieldInfos.push $ ←NameInfo.ofTypedName (struct.append name) type
pure $ fieldInfos
def StructureInfo.ofInductiveVal (v : InductiveVal) : MetaM StructureInfo := do
let info ← Info.ofConstantVal v.toConstantVal
let env ← getEnv
let parents := getParentStructures env v.name
let ctor := getStructureCtor env v.name
match getStructureInfo? env v.name with
| some i =>
if i.fieldNames.size - parents.size > 0 then
pure $ StructureInfo.mk info (←getFieldTypes v.name ctor parents.size) parents (←NameInfo.ofTypedName ctor.name ctor.type)
else
pure $ StructureInfo.mk info #[] parents (←NameInfo.ofTypedName ctor.name ctor.type)
| none => panic! s!"{v.name} is not a structure"
def getInstances (className : Name) : MetaM (Array Name) := do
let fn ← mkConstWithFreshMVarLevels className
let (xs, _, _) ← forallMetaTelescopeReducing (← inferType fn)
let insts ← SynthInstance.getInstances (mkAppN fn xs)
pure $ insts.map Expr.constName!
def ClassInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInfo := do
let sinfo ← StructureInfo.ofInductiveVal v
pure $ ClassInfo.mk sinfo (←getInstances v.name)
def ClassInductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInductiveInfo := do
let info ← InductiveInfo.ofInductiveVal v
pure $ ClassInductiveInfo.mk info (←getInstances v.name)
namespace DocInfo
def isBlackListed (declName : Name) : MetaM Bool := do
match ←findDeclarationRanges? declName with
| some _ =>
let env ← getEnv
pure (declName.isInternal)
<||> (pure $ isAuxRecursor env declName)
<||> (pure $ isNoConfusion env declName)
<||> isRec declName
<||> isMatcher declName
-- TODO: Evaluate whether filtering out declarations without range is sensible
| none => pure true
-- TODO: Is this actually the best way?
def isProjFn (declName : Name) : MetaM Bool := do
let env ← getEnv
match declName with
| Name.str parent name _ =>
if isStructure env parent then
match getStructureInfo? env parent with
| some i =>
match i.fieldNames.find? (· == name) with
| some _ => pure true
| none => pure false
| none => panic! s!"{parent} is not a structure"
else
pure false
| _ => pure false
def ofConstant : (Name × ConstantInfo) → MetaM (Option DocInfo) := λ (name, info) => do
if (←isBlackListed name) then
return none
match info with
| ConstantInfo.axiomInfo i => pure <| some <| axiomInfo (←AxiomInfo.ofAxiomVal i)
| ConstantInfo.thmInfo i => pure <| some <| theoremInfo (←TheoremInfo.ofTheoremVal i)
| ConstantInfo.opaqueInfo i => pure <| some <| opaqueInfo (←OpaqueInfo.ofOpaqueVal i)
| ConstantInfo.defnInfo i =>
if ← (isProjFn i.name) then
pure none
else
if (←isInstance i.name) then
let info ← InstanceInfo.ofDefinitionVal i
pure <| some <| instanceInfo info
else
let info ← DefinitionInfo.ofDefinitionVal i
pure <| some <| definitionInfo info
| ConstantInfo.inductInfo i =>
let env ← getEnv
if isStructure env i.name then
if isClass env i.name then
pure <| some <| classInfo (←ClassInfo.ofInductiveVal i)
else
pure <| some <| structureInfo (←StructureInfo.ofInductiveVal i)
else
if isClass env i.name then
pure <| some <| classInductiveInfo (←ClassInductiveInfo.ofInductiveVal i)
else
pure <| some <| inductiveInfo (←InductiveInfo.ofInductiveVal i)
-- we ignore these for now
| ConstantInfo.ctorInfo i => pure none
| ConstantInfo.recInfo i => pure none
| ConstantInfo.quotInfo i => pure none
def getName : DocInfo → Name
| axiomInfo i => i.name
| theoremInfo i => i.name
| opaqueInfo i => i.name
| definitionInfo i => i.name
| instanceInfo i => i.name
| inductiveInfo i => i.name
| structureInfo i => i.name
| classInfo i => i.name
| classInductiveInfo i => i.name
def getKind : DocInfo → String
| axiomInfo _ => "axiom"
| theoremInfo _ => "theorem"
| opaqueInfo _ => "constant"
| definitionInfo _ => "def"
| instanceInfo _ => "instance"
| inductiveInfo _ => "inductive"
| structureInfo _ => "structure"
| classInfo _ => "class"
| classInductiveInfo _ => "class"
def getKindDescription : DocInfo → String
| axiomInfo i => if i.isUnsafe then "unsafe axiom" else "axiom"
| theoremInfo _ => "theorem"
| opaqueInfo i =>
match i.unsafeInformation with
| DefinitionSafety.safe => "constant"
| DefinitionSafety.unsafe => "unsafe constant"
| DefinitionSafety.partial => "partial def"
| definitionInfo i => Id.run do
if i.hints.isAbbrev then
pure "abbrev"
else
let mut modifiers := #[]
if i.isUnsafe then
modifiers := modifiers.push "unsafe"
if i.isNonComputable then
modifiers := modifiers.push "noncomputable"
modifiers := modifiers.push "def"
pure $ String.intercalate " " modifiers.toList
| instanceInfo i => Id.run do
let mut modifiers := #[]
if i.isUnsafe then
modifiers := modifiers.push "unsafe"
if i.isNonComputable then
modifiers := modifiers.push "noncomputable"
modifiers := modifiers.push "instance"
pure $ String.intercalate " " modifiers.toList
| inductiveInfo i => if i.isUnsafe then "unsafe inductive" else "inductive"
| structureInfo _ => "structure"
| classInfo _ => "class"
| classInductiveInfo _ => "class inductive"
def getType : DocInfo → CodeWithInfos
| axiomInfo i => i.type
| theoremInfo i => i.type
| opaqueInfo i => i.type
| definitionInfo i => i.type
| instanceInfo i => i.type
| inductiveInfo i => i.type
| structureInfo i => i.type
| classInfo i => i.type
| classInductiveInfo i => i.type
def getArgs : DocInfo → Array Arg
| axiomInfo i => i.args
| theoremInfo i => i.args
| opaqueInfo i => i.args
| definitionInfo i => i.args
| instanceInfo i => i.args
| inductiveInfo i => i.args
| structureInfo i => i.args
| classInfo i => i.args
| classInductiveInfo i => i.args
def getAttrs : DocInfo → Array String
| axiomInfo i => i.attrs
| theoremInfo i => i.attrs
| opaqueInfo i => i.attrs
| definitionInfo i => i.attrs
| instanceInfo i => i.attrs
| inductiveInfo i => i.attrs
| structureInfo i => i.attrs
| classInfo i => i.attrs
| classInductiveInfo i => i.attrs
def getDocString : DocInfo → Option String
| axiomInfo i => i.doc
| theoremInfo i => i.doc
| opaqueInfo i => i.doc
| definitionInfo i => i.doc
| instanceInfo i => i.doc
| inductiveInfo i => i.doc
| structureInfo i => i.doc
| classInfo i => i.doc
| classInductiveInfo i => i.doc
end DocInfo
namespace ModuleMember
def getDeclarationRange : ModuleMember → DeclarationRange
| docInfo i => i.getDeclarationRange
| modDoc i => i.declarationRange
def order (l r : ModuleMember) : Bool :=
Position.lt l.getDeclarationRange.pos r.getDeclarationRange.pos
def getName : ModuleMember → Name
| docInfo i => i.getName
| modDoc i => Name.anonymous
def getDocString : ModuleMember → Option String
| docInfo i => i.getDocString
| modDoc i => i.doc
end ModuleMember
def filterMapDocInfo (ms : Array ModuleMember) : Array DocInfo :=
ms.filterMap filter
where
filter : ModuleMember → Option DocInfo
| ModuleMember.docInfo i => some i
| _ => none
structure AnalyzerResult where
name2ModIdx : HashMap Name ModuleIdx
moduleNames : Array Name
moduleInfo : HashMap Name Module
hierarchy : Hierarchy
-- Indexed by ModIdx
importAdj : Array (Array Bool)
deriving Inhabited
deriving instance Inhabited for ModuleDoc
def process : MetaM AnalyzerResult := do
let env ← getEnv
let mut res := mkHashMap env.header.moduleNames.size
for module in env.header.moduleNames do
let modDocs := match getModuleDoc? env module with
| none => #[]
| some ds => ds
|>.map (λ doc => ModuleMember.modDoc doc)
res := res.insert module (Module.mk module modDocs)
for cinfo in env.constants.toList do
try
let analysis := Prod.fst <$> Meta.MetaM.toIO (DocInfo.ofConstant cinfo) { maxHeartbeats := 5000000, options := ⟨[(`pp.tagAppFns, true)]⟩ } { env := env} {} {}
if let some dinfo ← analysis then
let some modidx := env.getModuleIdxFor? dinfo.getName | unreachable!
let moduleName := env.allImportedModuleNames.get! modidx
let module := res.find! moduleName
res := res.insert moduleName {module with members := module.members.push (ModuleMember.docInfo dinfo)}
catch e =>
IO.println s!"WARNING: Failed to obtain information for: {cinfo.fst}: {←e.toMessageData.toString}"
-- TODO: This is definitely not the most efficient way to store this data
let mut adj := Array.mkArray res.size (Array.mkArray res.size false)
-- TODO: This could probably be faster if we did an insertion sort above instead
for (moduleName, module) in res.toArray do
res := res.insert moduleName {module with members := module.members.qsort ModuleMember.order}
let some modIdx := env.getModuleIdx? moduleName | unreachable!
let moduleData := env.header.moduleData.get! modIdx
for imp in moduleData.imports do
let some importIdx := env.getModuleIdx? imp.module | unreachable!
adj := adj.set! modIdx (adj.get! modIdx |>.set! importIdx true)
pure {
name2ModIdx := env.const2ModIdx,
moduleNames := env.header.moduleNames,
moduleInfo := res,
hierarchy := Hierarchy.fromArray env.header.moduleNames,
importAdj := adj
}
end DocGen4
import DocGen4.Process.AxiomInfo
import DocGen4.Process.Base
import DocGen4.Process.ClassInfo
import DocGen4.Process.DefinitionInfo
import DocGen4.Process.DocInfo
import DocGen4.Process.Hierarchy
import DocGen4.Process.InductiveInfo
import DocGen4.Process.InstanceInfo
import DocGen4.Process.NameInfo
import DocGen4.Process.OpaqueInfo
import DocGen4.Process.StructureInfo
import DocGen4.Process.TheoremInfo

View File

@ -0,0 +1,104 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import Std.Data.HashMap
import DocGen4.Process.Base
import DocGen4.Process.Hierarchy
import DocGen4.Process.DocInfo
namespace DocGen4.Process
open Lean Meta Std
inductive ModuleMember where
| docInfo (info : DocInfo) : ModuleMember
| modDoc (doc : ModuleDoc) : ModuleMember
deriving Inhabited
structure Module where
name : Name
-- Sorted according to their line numbers
members : Array ModuleMember
deriving Inhabited
structure AnalyzerResult where
name2ModIdx : HashMap Name ModuleIdx
moduleNames : Array Name
moduleInfo : HashMap Name Module
hierarchy : Hierarchy
-- Indexed by ModIdx
importAdj : Array (Array Bool)
deriving Inhabited
namespace ModuleMember
def getDeclarationRange : ModuleMember → DeclarationRange
| docInfo i => i.getDeclarationRange
| modDoc i => i.declarationRange
def order (l r : ModuleMember) : Bool :=
Position.lt l.getDeclarationRange.pos r.getDeclarationRange.pos
def getName : ModuleMember → Name
| docInfo i => i.getName
| modDoc i => Name.anonymous
def getDocString : ModuleMember → Option String
| docInfo i => i.getDocString
| modDoc i => i.doc
end ModuleMember
def process : MetaM AnalyzerResult := do
let env ← getEnv
let mut res := mkHashMap env.header.moduleNames.size
for module in env.header.moduleNames do
let modDocs := match getModuleDoc? env module with
| none => #[]
| some ds => ds
|>.map (λ doc => ModuleMember.modDoc doc)
res := res.insert module (Module.mk module modDocs)
for cinfo in env.constants.toList do
try
let analysis := Prod.fst <$> Meta.MetaM.toIO (DocInfo.ofConstant cinfo) { maxHeartbeats := 5000000, options := ⟨[(`pp.tagAppFns, true)]⟩ } { env := env} {} {}
if let some dinfo ← analysis then
let some modidx := env.getModuleIdxFor? dinfo.getName | unreachable!
let moduleName := env.allImportedModuleNames.get! modidx
let module := res.find! moduleName
res := res.insert moduleName {module with members := module.members.push (ModuleMember.docInfo dinfo)}
catch e =>
IO.println s!"WARNING: Failed to obtain information for: {cinfo.fst}: {←e.toMessageData.toString}"
-- TODO: This is definitely not the most efficient way to store this data
let mut adj := Array.mkArray res.size (Array.mkArray res.size false)
-- TODO: This could probably be faster if we did an insertion sort above instead
for (moduleName, module) in res.toArray do
res := res.insert moduleName {module with members := module.members.qsort ModuleMember.order}
let some modIdx := env.getModuleIdx? moduleName | unreachable!
let moduleData := env.header.moduleData.get! modIdx
for imp in moduleData.imports do
let some importIdx := env.getModuleIdx? imp.module | unreachable!
adj := adj.set! modIdx (adj.get! modIdx |>.set! importIdx true)
pure {
name2ModIdx := env.const2ModIdx,
moduleNames := env.header.moduleNames,
moduleInfo := res,
hierarchy := Hierarchy.fromArray env.header.moduleNames,
importAdj := adj
}
def filterMapDocInfo (ms : Array ModuleMember) : Array DocInfo :=
ms.filterMap filter
where
filter : ModuleMember → Option DocInfo
| ModuleMember.docInfo i => some i
| _ => none
end DocGen4.Process

View File

@ -0,0 +1,19 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.NameInfo
namespace DocGen4.Process
open Lean Meta
def AxiomInfo.ofAxiomVal (v : AxiomVal) : MetaM AxiomInfo := do
let info ← Info.ofConstantVal v.toConstantVal
pure $ AxiomInfo.mk info v.isUnsafe
end DocGen4.Process

103
DocGen4/Process/Base.lean Normal file
View File

@ -0,0 +1,103 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
namespace DocGen4.Process
open Lean Widget Meta
structure NameInfo where
name : Name
type : CodeWithInfos
doc : Option String
deriving Inhabited
structure Arg where
name : Name
type : CodeWithInfos
binderInfo : BinderInfo
structure Info extends NameInfo where
args : Array Arg
declarationRange : DeclarationRange
attrs : Array String
deriving Inhabited
structure AxiomInfo extends Info where
isUnsafe : Bool
deriving Inhabited
structure TheoremInfo extends Info
deriving Inhabited
structure OpaqueInfo extends Info where
value : CodeWithInfos
-- A value of partial is interpreted as this constant being part of a partial def
-- since the actual definition for a partial def is hidden behind an inaccessible value
unsafeInformation : DefinitionSafety
deriving Inhabited
structure DefinitionInfo extends Info where
-- partial defs are handled by OpaqueInfo
isUnsafe : Bool
hints : ReducibilityHints
equations : Option (Array CodeWithInfos)
isNonComputable : Bool
deriving Inhabited
abbrev InstanceInfo := DefinitionInfo
structure InductiveInfo extends Info where
ctors : List NameInfo -- List of all constructors and their type for this inductive datatype
isUnsafe : Bool
deriving Inhabited
structure StructureInfo extends Info where
fieldInfo : Array NameInfo
parents : Array Name
ctor : NameInfo
deriving Inhabited
structure ClassInfo extends StructureInfo where
instances : Array Name
deriving Inhabited
structure ClassInductiveInfo extends InductiveInfo where
instances : Array Name
deriving Inhabited
inductive DocInfo where
| axiomInfo (info : AxiomInfo) : DocInfo
| theoremInfo (info : TheoremInfo) : DocInfo
| opaqueInfo (info : OpaqueInfo) : DocInfo
| definitionInfo (info : DefinitionInfo) : DocInfo
| instanceInfo (info : InstanceInfo) : DocInfo
| inductiveInfo (info : InductiveInfo) : DocInfo
| structureInfo (info : StructureInfo) : DocInfo
| classInfo (info : ClassInfo) : DocInfo
| classInductiveInfo (info : ClassInductiveInfo) : DocInfo
deriving Inhabited
deriving instance Inhabited for ModuleDoc
def prettyPrintTerm (expr : Expr) : MetaM CodeWithInfos := do
let (fmt, infos) ← formatInfos expr
let tt := TaggedText.prettyTagged fmt
let ctx := {
env := ← getEnv
mctx := ← getMCtx
options := ← getOptions
currNamespace := ← getCurrNamespace
openDecls := ← getOpenDecls
fileMap := default,
ngen := ← getNGen
}
pure $ tagExprInfos ctx infos tt
def isInstance (declName : Name) : MetaM Bool := do
pure $ (instanceExtension.getState (←getEnv)).instanceNames.contains declName
end DocGen4.Process

View File

@ -0,0 +1,32 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.NameInfo
import DocGen4.Process.StructureInfo
import DocGen4.Process.InductiveInfo
namespace DocGen4.Process
open Lean Meta
def getInstances (className : Name) : MetaM (Array Name) := do
let fn ← mkConstWithFreshMVarLevels className
let (xs, _, _) ← forallMetaTelescopeReducing (← inferType fn)
let insts ← SynthInstance.getInstances (mkAppN fn xs)
pure $ insts.map Expr.constName!
def ClassInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInfo := do
let sinfo ← StructureInfo.ofInductiveVal v
pure $ ClassInfo.mk sinfo (←getInstances v.name)
def ClassInductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInductiveInfo := do
let info ← InductiveInfo.ofInductiveVal v
pure $ ClassInductiveInfo.mk info (←getInstances v.name)
end DocGen4.Process

View File

@ -0,0 +1,57 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.NameInfo
namespace DocGen4.Process
open Lean Meta Widget
partial def stripArgs (e : Expr) : Expr :=
match e.consumeMData with
| Expr.lam name type body data =>
let name := name.eraseMacroScopes
stripArgs (Expr.instantiate1 body (mkFVar ⟨name⟩))
| Expr.forallE name type body data =>
let name := name.eraseMacroScopes
stripArgs (Expr.instantiate1 body (mkFVar ⟨name⟩))
| _ => e
def processEq (eq : Name) : MetaM CodeWithInfos := do
let type ← (mkConstWithFreshMVarLevels eq >>= inferType)
let final := stripArgs type
prettyPrintTerm final
def valueToEq (v : DefinitionVal) : MetaM Expr := withLCtx {} {} do
let env ← getEnv
withOptions (tactic.hygienic.set . false) do
lambdaTelescope v.value fun xs body => do
let us := v.levelParams.map mkLevelParam
let type ← mkEq (mkAppN (Lean.mkConst v.name us) xs) body
let type ← mkForallFVars xs type
pure type
def DefinitionInfo.ofDefinitionVal (v : DefinitionVal) : MetaM DefinitionInfo := do
let info ← Info.ofConstantVal v.toConstantVal
let isUnsafe := v.safety == DefinitionSafety.unsafe
let isNonComput := isNoncomputable (←getEnv) v.name
try
let eqs? ← getEqnsFor? v.name
match eqs? with
| some eqs =>
let prettyEqs ← eqs.mapM processEq
pure $ DefinitionInfo.mk info isUnsafe v.hints prettyEqs isNonComput
| none =>
let eq ← prettyPrintTerm $ stripArgs (←valueToEq v)
pure $ DefinitionInfo.mk info isUnsafe v.hints (some #[eq]) isNonComput
catch err =>
IO.println s!"WARNING: Failed to calculate equational lemmata for {v.name}: {←err.toMessageData.toString}"
pure $ DefinitionInfo.mk info isUnsafe v.hints none isNonComput
end DocGen4.Process

View File

@ -0,0 +1,199 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.AxiomInfo
import DocGen4.Process.TheoremInfo
import DocGen4.Process.OpaqueInfo
import DocGen4.Process.InstanceInfo
import DocGen4.Process.DefinitionInfo
import DocGen4.Process.ClassInfo
import DocGen4.Process.StructureInfo
import DocGen4.Process.InductiveInfo
namespace DocGen4.Process
namespace DocInfo
open Lean Meta Widget
def getDeclarationRange : DocInfo → DeclarationRange
| axiomInfo i => i.declarationRange
| theoremInfo i => i.declarationRange
| opaqueInfo i => i.declarationRange
| definitionInfo i => i.declarationRange
| instanceInfo i => i.declarationRange
| inductiveInfo i => i.declarationRange
| structureInfo i => i.declarationRange
| classInfo i => i.declarationRange
| classInductiveInfo i => i.declarationRange
def getName : DocInfo → Name
| axiomInfo i => i.name
| theoremInfo i => i.name
| opaqueInfo i => i.name
| definitionInfo i => i.name
| instanceInfo i => i.name
| inductiveInfo i => i.name
| structureInfo i => i.name
| classInfo i => i.name
| classInductiveInfo i => i.name
def getKind : DocInfo → String
| axiomInfo _ => "axiom"
| theoremInfo _ => "theorem"
| opaqueInfo _ => "constant"
| definitionInfo _ => "def"
| instanceInfo _ => "instance"
| inductiveInfo _ => "inductive"
| structureInfo _ => "structure"
| classInfo _ => "class"
| classInductiveInfo _ => "class"
def getType : DocInfo → CodeWithInfos
| axiomInfo i => i.type
| theoremInfo i => i.type
| opaqueInfo i => i.type
| definitionInfo i => i.type
| instanceInfo i => i.type
| inductiveInfo i => i.type
| structureInfo i => i.type
| classInfo i => i.type
| classInductiveInfo i => i.type
def getArgs : DocInfo → Array Arg
| axiomInfo i => i.args
| theoremInfo i => i.args
| opaqueInfo i => i.args
| definitionInfo i => i.args
| instanceInfo i => i.args
| inductiveInfo i => i.args
| structureInfo i => i.args
| classInfo i => i.args
| classInductiveInfo i => i.args
def getAttrs : DocInfo → Array String
| axiomInfo i => i.attrs
| theoremInfo i => i.attrs
| opaqueInfo i => i.attrs
| definitionInfo i => i.attrs
| instanceInfo i => i.attrs
| inductiveInfo i => i.attrs
| structureInfo i => i.attrs
| classInfo i => i.attrs
| classInductiveInfo i => i.attrs
def getDocString : DocInfo → Option String
| axiomInfo i => i.doc
| theoremInfo i => i.doc
| opaqueInfo i => i.doc
| definitionInfo i => i.doc
| instanceInfo i => i.doc
| inductiveInfo i => i.doc
| structureInfo i => i.doc
| classInfo i => i.doc
| classInductiveInfo i => i.doc
def isBlackListed (declName : Name) : MetaM Bool := do
match ←findDeclarationRanges? declName with
| some _ =>
let env ← getEnv
pure (declName.isInternal)
<||> (pure $ isAuxRecursor env declName)
<||> (pure $ isNoConfusion env declName)
<||> isRec declName
<||> isMatcher declName
-- TODO: Evaluate whether filtering out declarations without range is sensible
| none => pure true
-- TODO: Is this actually the best way?
def isProjFn (declName : Name) : MetaM Bool := do
let env ← getEnv
match declName with
| Name.str parent name _ =>
if isStructure env parent then
match getStructureInfo? env parent with
| some i =>
match i.fieldNames.find? (· == name) with
| some _ => pure true
| none => pure false
| none => panic! s!"{parent} is not a structure"
else
pure false
| _ => pure false
def ofConstant : (Name × ConstantInfo) → MetaM (Option DocInfo) := λ (name, info) => do
if (←isBlackListed name) then
return none
match info with
| ConstantInfo.axiomInfo i => pure <| some <| axiomInfo (←AxiomInfo.ofAxiomVal i)
| ConstantInfo.thmInfo i => pure <| some <| theoremInfo (←TheoremInfo.ofTheoremVal i)
| ConstantInfo.opaqueInfo i => pure <| some <| opaqueInfo (←OpaqueInfo.ofOpaqueVal i)
| ConstantInfo.defnInfo i =>
if ← (isProjFn i.name) then
pure none
else
if (←isInstance i.name) then
let info ← InstanceInfo.ofDefinitionVal i
pure <| some <| instanceInfo info
else
let info ← DefinitionInfo.ofDefinitionVal i
pure <| some <| definitionInfo info
| ConstantInfo.inductInfo i =>
let env ← getEnv
if isStructure env i.name then
if isClass env i.name then
pure <| some <| classInfo (←ClassInfo.ofInductiveVal i)
else
pure <| some <| structureInfo (←StructureInfo.ofInductiveVal i)
else
if isClass env i.name then
pure <| some <| classInductiveInfo (←ClassInductiveInfo.ofInductiveVal i)
else
pure <| some <| inductiveInfo (←InductiveInfo.ofInductiveVal i)
-- we ignore these for now
| ConstantInfo.ctorInfo i => pure none
| ConstantInfo.recInfo i => pure none
| ConstantInfo.quotInfo i => pure none
def getKindDescription : DocInfo → String
| axiomInfo i => if i.isUnsafe then "unsafe axiom" else "axiom"
| theoremInfo _ => "theorem"
| opaqueInfo i =>
match i.unsafeInformation with
| DefinitionSafety.safe => "constant"
| DefinitionSafety.unsafe => "unsafe constant"
| DefinitionSafety.partial => "partial def"
| definitionInfo i => Id.run do
if i.hints.isAbbrev then
pure "abbrev"
else
let mut modifiers := #[]
if i.isUnsafe then
modifiers := modifiers.push "unsafe"
if i.isNonComputable then
modifiers := modifiers.push "noncomputable"
modifiers := modifiers.push "def"
pure $ String.intercalate " " modifiers.toList
| instanceInfo i => Id.run do
let mut modifiers := #[]
if i.isUnsafe then
modifiers := modifiers.push "unsafe"
if i.isNonComputable then
modifiers := modifiers.push "noncomputable"
modifiers := modifiers.push "instance"
pure $ String.intercalate " " modifiers.toList
| inductiveInfo i => if i.isUnsafe then "unsafe inductive" else "inductive"
| structureInfo _ => "structure"
| classInfo _ => "class"
| classInductiveInfo _ => "class inductive"
end DocInfo
end DocGen4.Process

View File

@ -0,0 +1,27 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.NameInfo
namespace DocGen4.Process
open Lean Meta
def getConstructorType (ctor : Name) : MetaM Expr := do
let env ← getEnv
match env.find? ctor with
| some (ConstantInfo.ctorInfo i) => pure i.type
| _ => panic! s!"Constructor {ctor} was requested but does not exist"
def InductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM InductiveInfo := do
let info ← Info.ofConstantVal v.toConstantVal
let env ← getEnv
let ctors ← v.ctors.mapM (λ name => do NameInfo.ofTypedName name (←getConstructorType name))
pure $ InductiveInfo.mk info ctors v.isUnsafe
end DocGen4.Process

View File

@ -0,0 +1,24 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.NameInfo
import DocGen4.Process.DefinitionInfo
namespace DocGen4.Process
open Lean Meta
def InstanceInfo.ofDefinitionVal (v : DefinitionVal) : MetaM InstanceInfo := do
let info ← DefinitionInfo.ofDefinitionVal v
let some className := getClassName (←getEnv) v.type | unreachable!
if let some instAttr ← getDefaultInstance v.name className then
pure { info with attrs := info.attrs.push instAttr }
else
pure info
end DocGen4.Process

View File

@ -0,0 +1,47 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.Attributes
namespace DocGen4.Process
open Lean Meta
def NameInfo.ofTypedName (n : Name) (t : Expr) : MetaM NameInfo := do
let env ← getEnv
pure { name := n, type := ←prettyPrintTerm t, doc := ←findDocString? env n}
partial def typeToArgsType (e : Expr) : (Array (Name × Expr × BinderInfo) × Expr) :=
let helper := λ name type body data =>
-- Once we hit a name with a macro scope we stop traversing the expression
-- and print what is left after the : instead. The only exception
-- to this is instances since these almost never have a name
-- but should still be printed as arguments instead of after the :.
if name.hasMacroScopes ∧ ¬data.binderInfo.isInstImplicit then
(#[], e)
else
let name := name.eraseMacroScopes
let arg := (name, type, data.binderInfo)
let (args, final) := typeToArgsType (Expr.instantiate1 body (mkFVar ⟨name⟩))
(#[arg] ++ args, final)
match e.consumeMData with
| Expr.lam name type body data => helper name type body data
| Expr.forallE name type body data => helper name type body data
| _ => (#[], e)
def Info.ofConstantVal (v : ConstantVal) : MetaM Info := do
let env ← getEnv
let (args, type) := typeToArgsType v.type
let args ← args.mapM (λ (n, e, b) => do pure $ Arg.mk n (←prettyPrintTerm e) b)
let doc ← findDocString? env v.name
let nameInfo ← NameInfo.ofTypedName v.name type
match ←findDeclarationRanges? v.name with
-- TODO: Maybe selection range is more relevant? Figure this out in the future
| some range => pure $ Info.mk nameInfo args range.range (←getAllAttributes v.name)
| none => panic! s!"{v.name} is a declaration without position"
end DocGen4.Process

View File

@ -0,0 +1,26 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.NameInfo
namespace DocGen4.Process
open Lean Meta
def OpaqueInfo.ofOpaqueVal (v : OpaqueVal) : MetaM OpaqueInfo := do
let info ← Info.ofConstantVal v.toConstantVal
let t ← prettyPrintTerm v.value
let env ← getEnv
let isPartial := env.find? (Compiler.mkUnsafeRecName v.name) |>.isSome
if isPartial then
pure $ OpaqueInfo.mk info t DefinitionSafety.partial
else
let safety := if v.isUnsafe then DefinitionSafety.unsafe else DefinitionSafety.safe
pure $ OpaqueInfo.mk info t safety
end DocGen4.Process

View File

@ -0,0 +1,47 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.NameInfo
namespace DocGen4.Process
open Lean Meta
-- TODO: replace with Leos variant from Zulip
def dropArgs (type : Expr) (n : Nat) : (Expr × List (Name × Expr)) :=
match type, n with
| e, 0 => (e, [])
| Expr.forallE name type body _, x + 1 =>
let body := body.instantiate1 $ mkFVar ⟨name⟩
let next := dropArgs body x
{ next with snd := (name, type) :: next.snd}
| e, x + 1 => panic! s!"No forallE left"
def getFieldTypes (struct : Name) (ctor : ConstructorVal) (parents : Nat) : MetaM (Array NameInfo) := do
let type := ctor.type
let (fieldFunction, params) := dropArgs type (ctor.numParams + parents)
let (_, fields) := dropArgs fieldFunction (ctor.numFields - parents)
let mut fieldInfos := #[]
for (name, type) in fields do
fieldInfos := fieldInfos.push $ ←NameInfo.ofTypedName (struct.append name) type
pure $ fieldInfos
def StructureInfo.ofInductiveVal (v : InductiveVal) : MetaM StructureInfo := do
let info ← Info.ofConstantVal v.toConstantVal
let env ← getEnv
let parents := getParentStructures env v.name
let ctor := getStructureCtor env v.name
match getStructureInfo? env v.name with
| some i =>
if i.fieldNames.size - parents.size > 0 then
pure $ StructureInfo.mk info (←getFieldTypes v.name ctor parents.size) parents (←NameInfo.ofTypedName ctor.name ctor.type)
else
pure $ StructureInfo.mk info #[] parents (←NameInfo.ofTypedName ctor.name ctor.type)
| none => panic! s!"{v.name} is not a structure"
end DocGen4.Process

View File

@ -0,0 +1,19 @@
/-
Copyright (c) 2022 Henrik Böving. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Henrik Böving
-/
import Lean
import DocGen4.Process.Base
import DocGen4.Process.NameInfo
namespace DocGen4.Process
open Lean Meta
def TheoremInfo.ofTheoremVal (v : TheoremVal) : MetaM TheoremInfo := do
let info ← Info.ofConstantVal v.toConstantVal
pure $ TheoremInfo.mk info
end DocGen4.Process