Generalize in anticipation of merging the lichess scraper. (#1)

* Add a general `Scraper` class.

* Setup main as primary entrypoint.

* Abstract original scraper into scraper class.

* Add better logging and cleaner bash commands.

* Ensure exporting works.
pull/2/head
Joshua Potter 2023-11-30 15:15:15 -07:00 committed by GitHub
parent 3cc31f8f24
commit 10801b560c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 337 additions and 181 deletions

View File

@ -29,15 +29,12 @@ data
If you have nix available, run: If you have nix available, run:
```bash ```bash
$> nix build $> nix run . -- --user-agent <your-email> -s chesscom
$> result/bin/app --user-agent <your-email>
``` ```
If not, ensure you have [poetry](https://python-poetry.org/) on your machine and If not, ensure you have [poetry](https://python-poetry.org/) on your machine and
instead run the following: instead run the following:
```bash ```bash
$> poetry install $> poetry run python3 -m app -u <your-email> -s chesscom
$> source $(poetry env info --path)/bin/activate
$> python3 -m app
``` ```
## Development ## Development

View File

@ -1,4 +1,39 @@
from app import scraper import aiohttp
import argparse
import asyncio
from app.chesscom import Scraper as ChesscomScraper
from app.scraper import Site
async def run():
parser = argparse.ArgumentParser(
prog="coach-scraper",
description="HTML scraping of chess.com coaches.",
)
parser.add_argument("-u", "--user-agent", required=True)
parser.add_argument(
"-s",
"--site",
required=True,
choices=[
Site.CHESSCOM.value,
],
)
args = parser.parse_args()
async with aiohttp.ClientSession(
headers={"User-Agent": f"BoardWise coach-scraper ({args.user_agent})"}
) as session:
if args.site == Site.CHESSCOM.value:
scraper = ChesscomScraper(session)
await scraper.scrape()
def main():
asyncio.run(run())
if __name__ == "__main__": if __name__ == "__main__":
scraper.run() main()

193
app/chesscom.py Normal file
View File

@ -0,0 +1,193 @@
import aiohttp
import asyncio
import json
import os
import os.path
from app.scraper import AnsiColor, BaseScraper, Export, Site
from bs4 import BeautifulSoup
from typing import List
# The number of coach listing pages we will at most iterate through. This number
# was determined by going to chess.com/coaches?sortBy=alphabetical&page=1 and
# traversing to the last page.
MAX_PAGES = 64
# How long to wait between a batch of network requests.
SLEEP_SECS = 3
class Scraper(BaseScraper):
def __init__(self, session: aiohttp.ClientSession):
super().__init__(site=Site.CHESSCOM.value, session=session)
async def download_usernames(self) -> List[str]:
"""Scan through chess.com/coaches for all coaches' usernames.
@return
The complete list of scraped usernames across every coach listing
page.
"""
usernames = []
for page_no in range(1, MAX_PAGES + 1):
filepath = self.path_page_file(page_no)
try:
with open(filepath, "r") as f:
self.log(
[
(AnsiColor.INFO, "[INFO]"),
(None, ": Reading file "),
(AnsiColor.DATA, filepath),
]
)
usernames.extend([line.strip() for line in f.readlines()])
except FileNotFoundError:
page_usernames = await self._scrape_page(page_no)
if not page_usernames:
self.log(
[
(AnsiColor.ERROR, "[ERROR]"),
(None, ": Could not scrape page "),
(AnsiColor.DATA, str(page_no)),
]
)
continue
with open(filepath, "w") as f:
for username in page_usernames:
f.write(f"{username}\n")
usernames.extend(page_usernames)
self.log(
[
(AnsiColor.INFO, "[INFO]"),
(None, ": Downloaded page "),
(AnsiColor.DATA, filepath),
]
)
await asyncio.sleep(SLEEP_SECS)
return usernames
async def _scrape_page(self, page_no: int) -> List[str]:
"""Scan through chess.com/coaches/?page=<n> for all coaches' usernames.
@param page_no
The page consisting of at most 25 coaches (at the time of writing)
whose usernames are to be scraped.
@return
The list of scraped usernames on the specified coach listing page.
"""
url = f"https://www.chess.com/coaches?sortBy=alphabetical&page={page_no}"
response, status_code = await self.request(url)
if response is None:
self.log(
[
(AnsiColor.ERROR, "[ERROR]"),
(None, ": Received status "),
(AnsiColor.DATA, f"{status_code} "),
(None, "when downloading page "),
(AnsiColor.DATA, str(page_no)),
]
)
return
usernames = []
soup = BeautifulSoup(response, "html.parser")
members = soup.find_all("a", class_="members-categories-username")
for member in members:
href = member.get("href")
username = href[len("https://www.chess.com/member/") :]
usernames.append(username)
return usernames
async def download_profile(self, username: str):
"""For each coach, download coach-specific data.
This sends three parallel requests for:
* the coach's profile,
* the coach's recent activity,
* the coach's stats.
@param username
The coach username corresponding to the downloaded files.
"""
used_network = await asyncio.gather(
self._download_profile_file(
url=f"https://www.chess.com/member/{username}",
username=username,
filename=self.path_coach_file(username, f"{username}.html"),
),
self._download_profile_file(
url=f"https://www.chess.com/callback/member/activity/{username}?page=1",
username=username,
filename=self.path_coach_file(username, "activity.json"),
),
self._download_profile_file(
url=f"https://www.chess.com/callback/member/stats/{username}",
username=username,
filename=self.path_coach_file(username, "stats.json"),
),
)
if any(used_network):
self.log(
[
(AnsiColor.INFO, "[INFO]"),
(None, ": Downloaded data for coach "),
(AnsiColor.DATA, username),
]
)
await asyncio.sleep(SLEEP_SECS)
else:
self.log(
[
(AnsiColor.INFO, "[INFO]"),
(None, ": Skipping download for coach "),
(AnsiColor.DATA, username),
]
)
async def _download_profile_file(self, url: str, username: str, filename: str):
"""Writes the contents of url into the specified file.
@param url
The URL of the file to download.
@param username
The coach username corresponding to the downloaded file.
@param filename
The output file to write the downloaded content to.
@return:
True if we make a network request. False otherwise.
"""
if os.path.isfile(filename):
return False
response, _unused_status = await self.request(url)
if response is not None:
with open(filename, "w") as f:
f.write(response)
return True
def _load_stats_json(self, stats: dict) -> Export:
"""Extract relevant fields from a `stats.json` file."""
export: Export = {}
for stat in stats.get("stats", []):
if stat["key"] == "rapid":
export["fide_rapid"] = stat["stats"]["rating"]
return export
async def export(self, username: str) -> Export:
"""Transform coach-specific data into uniform format."""
stat_export: Export = {}
try:
with open(self.path_coach_file(username, "stats.json"), "r") as f:
stat_export = self._load_stats_json(json.load(f))
except FileNotFoundError:
pass
export: Export = {
"fide_rapid": None,
}
export.update(stat_export)
return export

View File

@ -1,200 +1,119 @@
import aiohttp import aiohttp
import argparse import enum
import asyncio import json
import os import os
import os.path
from bs4 import BeautifulSoup from typing import List, Tuple, Union
from typing_extensions import TypedDict
# The root directory containing downloaded files for a coach. class Site(enum.Enum):
DATA_COACH_DIR = "data/coach/{username}" CHESSCOM = "chesscom"
LICHESS = "lichess"
# Where a part of coach-related data is stored.
DATA_COACH_FILE = "data/coach/{username}/{filename}"
# Where a part of all discovered coach usernames is stored.
DATA_COACH_LIST = "data/pages/{page_no}.txt"
# The "User-Agent" value set in every request to chess.com.
USER_AGENT = "BoardWise chesscom-scraper ({user_agent})"
# How long to wait between a batch of network requests.
SLEEP_SECS = 3
def ANSI_COLOR(s: str): class AnsiColor(enum.Enum):
"""Print colored output to the console.""" ERROR = "\033[0;31m"
return f"\033[0;34m{s}\033[0m" # Blue INFO = "\033[0;34m"
DATA = "\033[0;36m"
RESET = "\033[0m"
async def chesscom_request(session: aiohttp.ClientSession, url: str): class Export(TypedDict, total=False):
"""Convenience function for network requests to chess.com. fide_rapid: Union[int, None]
@param session
The `aiohttp.ClientSession` context our requests are made from.
@param url
The URL to send a request to.
@return
The text response returned by the server at @url.
"""
async with session.get(url) as response:
if response.status == 200:
return await response.text()
print(f"Encountered {response.status} when retrieving {url}.")
async def _scrape_page_coach_usernames(session: aiohttp.ClientSession, page_no: int): class BaseScraper:
"""Scan through chess.com/coaches/?page=<n> for all coaches' usernames. def __init__(self, site: str, session: aiohttp.ClientSession):
"""Initialize a new web scraper and exporter.
@param session @param site:
The `aiohttp.ClientSession` context our requests are made from. The site we are making requests out to.
@param page_no @param session:
The page consisting of at most 25 coaches (at the time of writing) The `aiohttp.ClientSession` context our requests are made from.
whose usernames are to be scraped. """
@return self.site = site
The list of scraped usernames on the specified coach listing page. self.session = session
"""
url = f"https://www.chess.com/coaches?sortBy=alphabetical&page={page_no}"
response = await chesscom_request(session, url)
if response is None:
return
usernames = [] async def download_usernames(self) -> List[str]:
soup = BeautifulSoup(response, "html.parser") """Collect all coach usernames from the specified site."""
members = soup.find_all("a", class_="members-categories-username") raise NotImplementedError()
for member in members:
href = member.get("href")
username = href[len("https://www.chess.com/member/") :]
usernames.append(username)
return usernames async def download_profile(self, username: str):
"""For each coach, download coach-specific data."""
raise NotImplementedError()
async def export(self, username: str) -> Export:
"""Transform coach-specific data into uniform format."""
raise NotImplementedError()
async def _scrape_all_coach_usernames( async def request(self, url: str) -> Tuple[Union[str, None], int]:
session: aiohttp.ClientSession, max_pages: int = 64 """Make network requests using the internal session.
):
"""Scan through chess.com/coaches for all coaches' usernames.
@param session @param url
The `aiohttp.ClientSession` context our requests are made from. The URL to make a GET request to.
@param max_pages @return
The number of pages we will at most iterate through. This number was Tuple containing the response body (if the request was successful)
determined by going to chess.com/coaches?sortBy=alphabetical&page=1 and status code.
and traversing to the last page. """
@return async with self.session.get(url) as response:
The complete list of scraped usernames across every coach listing page. if response.status == 200:
""" return await response.text(), 200
usernames = [] return None, response.status
for page_no in range(1, max_pages + 1):
filepath = DATA_COACH_LIST.format(page_no=page_no)
try:
with open(filepath, "r") as f:
usernames.extend(f.readlines())
print(f"Skipping {ANSI_COLOR(filepath)}")
except FileNotFoundError:
page_usernames = await _scrape_page_coach_usernames(session, page_no)
if not page_usernames:
print(f"Could not write {ANSI_COLOR(filepath)}")
continue
with open(filepath, "w") as f:
for username in page_usernames:
f.write(f"{username}\n")
usernames.extend(page_usernames)
print(f"Downloaded {ANSI_COLOR(filepath)}")
await asyncio.sleep(SLEEP_SECS)
return usernames async def scrape(self):
"""Main entrypoint for scraping and exporting downloaded content.
A `Scraper` is structured to operates in the following stages:
async def _download_coach_file( 1. Collect all coach usernames from the specified site.
session: aiohttp.ClientSession, url: str, username: str, filename: str 2. For each coach, download coach-specific data.
): 3. Transform this data and export into uniform format.
"""Writes the contents of @url into `DATA_COACH_FILE`. """
os.makedirs(self.path_coaches_dir(), exist_ok=True)
os.makedirs(self.path_pages_dir(), exist_ok=True)
usernames = await self.download_usernames()
for username in usernames:
os.makedirs(self.path_coach_dir(username), exist_ok=True)
await self.download_profile(username)
@param session export = await self.export(username)
The `aiohttp.ClientSession` context our requests are made from. with open(self.path_coach_file(username, "export.json"), "w") as f:
@param url json.dump(export, f)
The URL of the file to download. self.log(
@param username [
The coach username corresponding to the downloaded file. (AnsiColor.INFO, "[INFO]"),
@param filename (None, ": Finished exporting "),
The output file to write the downloaded content to. (AnsiColor.DATA, username),
@return: ]
True if we make a network request. False otherwise. )
"""
filepath = DATA_COACH_FILE.format(username=username, filename=filename)
if os.path.isfile(filepath):
return False
response = await chesscom_request(session, url) def path_coaches_dir(self):
if response is not None: """The root directory for all coach-related downloads."""
with open(filepath, "w") as f: return os.path.join("data", self.site, "coaches")
f.write(response)
return True
def path_coach_dir(self, username: str):
"""The root directory for a specific coach's downloads."""
return os.path.join(self.path_coaches_dir(), username)
async def _download_coach_data(session: aiohttp.ClientSession, username: str): def path_coach_file(self, username: str, filename: str):
"""Download coach-related data to the `DATA_COACH_DIR` directory. """Path to a coach-specific file download."""
return os.path.join(self.path_coach_dir(username), filename)
This sends three parallel requests for: def path_pages_dir(self):
* the coach's profile, """The root directory for all username listing files."""
* the coach's recent activity, return os.path.join("data", self.site, "pages")
* the coach's stats.
@param session def path_page_file(self, page_no: int):
The `aiohttp.ClientSession` context our requests are made from. """The root directory for usernames scraped from a single page."""
@param username return os.path.join(self.path_pages_dir(), f"{page_no}.txt")
The coach username corresponding to the downloaded files.
"""
used_network = await asyncio.gather(
_download_coach_file(
session,
url=f"https://www.chess.com/member/{username}",
username=username,
filename=f"{username}.html",
),
_download_coach_file(
session,
url=f"https://www.chess.com/callback/member/activity/{username}?page=1",
username=username,
filename="activity.json",
),
_download_coach_file(
session,
url=f"https://www.chess.com/callback/member/stats/{username}",
username=username,
filename="stats.json",
),
)
if any(used_network):
print(f"Downloaded {ANSI_COLOR(username)}")
await asyncio.sleep(SLEEP_SECS)
else:
print(f"Skipping {ANSI_COLOR(username)}")
def log(self, msgs: List[Tuple[Union[AnsiColor, None], str]]):
transformed = []
for k, v in msgs:
if k is None:
transformed.append(v)
else:
transformed.append(f"{k.value}{v}{AnsiColor.RESET.value}")
async def _scrape(): print("".join(transformed))
parser = argparse.ArgumentParser(
prog="chesscom-scraper",
description="HTML scraping of chess.com coaches.",
)
parser.add_argument("-u", "--user-agent", required=True)
args = parser.parse_args()
os.makedirs("data/pages", exist_ok=True)
os.makedirs("data/coach", exist_ok=True)
async with aiohttp.ClientSession(
headers={"User-Agent": USER_AGENT.format(user_agent=args.user_agent)}
) as session:
# Retrieve all coaches on the platform.
usernames = await _scrape_all_coach_usernames(session)
# For each coach, download relevant data.
for username in [u.strip() for u in usernames]:
os.makedirs(DATA_COACH_DIR.format(username=username), exist_ok=True)
await _download_coach_data(session, username)
def run():
asyncio.run(_scrape())

13
poetry.lock generated
View File

@ -345,6 +345,17 @@ files = [
{file = "types_html5lib-1.1.11.15-py3-none-any.whl", hash = "sha256:16fe936d99b9f7fc210e2e21a2aed1b6bbbc554ad8242a6ef75f6f2bddb27e58"}, {file = "types_html5lib-1.1.11.15-py3-none-any.whl", hash = "sha256:16fe936d99b9f7fc210e2e21a2aed1b6bbbc554ad8242a6ef75f6f2bddb27e58"},
] ]
[[package]]
name = "typing-extensions"
version = "4.8.0"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
{file = "typing_extensions-4.8.0-py3-none-any.whl", hash = "sha256:8f92fc8806f9a6b641eaa5318da32b44d401efaac0f6678c9bc448ba3605faa0"},
{file = "typing_extensions-4.8.0.tar.gz", hash = "sha256:df8e4339e9cb77357558cbdbceca33c303714cf861d1eef15e1070055ae8b7ef"},
]
[[package]] [[package]]
name = "yarl" name = "yarl"
version = "1.9.3" version = "1.9.3"
@ -451,4 +462,4 @@ multidict = ">=4.0"
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = "^3.11" python-versions = "^3.11"
content-hash = "987c0a45c65fc281154469d795a5dc2828af5fa55226a1688466b71bf4327e3e" content-hash = "04db01ae29bbc78abf48f0ae23d60db56da274aea1b281c7aeaca0e705162114"

View File

@ -12,10 +12,11 @@ aiohttp = "^3.8.6"
[tool.poetry.group.dev.dependencies] [tool.poetry.group.dev.dependencies]
types-beautifulsoup4 = "^4.12.0.7" types-beautifulsoup4 = "^4.12.0.7"
typing-extensions = "^4.8.0"
[build-system] [build-system]
requires = ["poetry-core"] requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api" build-backend = "poetry.core.masonry.api"
[tool.poetry.scripts] [tool.poetry.scripts]
app = "app.scraper:run" app = "app.__main__:main"